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Abstract

We explore algorithms for the automatic
generation of a limited-size lexicon from
a document, such that the lexicon cov-
ers as much as possible of the semantic
space of the original document, as specif-
ically as possible. We evaluate six re-
lated algorithms that automatically derive
limited-size vocabularies from Wikipedia
articles, focusing on nouns and verbs.
The proposed algorithms combine Person-
alized Page Rank (Agirre and Soroa, 2009)
and principles of information maximiza-
tion, beginning with a user-supplied docu-
ment and constructing a customized small
vocabulary using WordNet. The best-
performing algorithm relies on word-sense
disambiguation with sentence-level context
information at the earliest stage of analysis,
indicating that this computationally costly
task is nonetheless valuable.

1 Introduction

This report explores algorithms for the automatic
generation of a limited size lexicon from a doc-
ument, such that the lexicon covers as much as
possible of the semantic space of the original doc-
ument, as specifically as possible. While lexi-
cal simplification has typically worked at the sen-
tence level, it is our belief that the document as
a whole must be taken into account, and that cre-
ating a simpler vocabulary for the document and
then applying that vocabulary to the sentences
will give more appropriate results. This paper
presents some results on the problem of develop-
ing a document-level vocabulary.

Tasks for which it would be desirable to gener-
ate a smaller, and ideally simpler, vocabulary in-
clude full-document text summarization and text
paraphrase. In addition, simplification of a vocab-
ulary can be extended to icon sets used by mo-
bile devices or augmentative communication de-
vices. In particular, one type of Augmented and
Assistive Communication (AAC) system includes
a touchscreen, from which users select icons that
may, alone or in combination, represent specific
words or phrases (Baker, 1982).1 An AAC icon
set represents a set of concepts customized by a
human expert to a particular user. There is tension
between ensuring that the collection of icons – the
vocabulary – is large enough to be sufficiently ex-
pressive and ensuring that it is small enough to
allow for efficient navigation and maximal com-
munication speed, a major issue with AAC sys-
tems (Trnka et al., 2009). One might design the
icon set beginning with a text corpus representing
typical utterances of the particular user – perhaps
from a log file kept by a communication device
– and generate an icon set with more, and more
specific, icons for topics of frequent communica-
tion. Likewise, for any device with a touchscreen
interface, reducing the “vocabulary” of touchable
icons without compromising expressivity allows
for better usage of limited screen area.

In the next section we outline previous rele-
vant work in simplification. The third section
describes six methods for generating a reduced

1Users with appropriate levels of literacy and motor con-
trol may be able to type on an alphabetic keyboard; these are
not the users we are primarily concerned with in this work,
but see (Wandmacher et al., 2008; Trnka et al., 2009).
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lexicon from a document-derived vocabulary and
describes two measures for evaluating the qual-
ity of the resulting lexicons. The fourth section
discusses results obtained with English Wikipedia
(EW) articles. The paper concludes with discus-
sion and interpretation of our results.

2 Background

Text simplification is usually implemented in two
stages: first syntactic analysis and simplification
and then lexical simplification, which reduces the
number of difficult words and expressions. The
earliest approach to lexical simplification replaces
words by simpler synonyms. Synonym difficulty
is estimated using the frequency and length of
each word: more difficult words usually have
lower frequency of occurrence and a greater num-
ber of syllables. For example, (Carroll et al.,
1998) queries WordNet for synonyms (synsets)
and selects the most frequently occurring syn-
onym in a synset as determined by frequency
(Kucera and Francis, 1967). The authors wanted
to avoid deep semantic analysis; thus, no word-
sense disambiguation was performed. Lal (2002)
extended this approach by including the syllable
count as part of a word’s difficulty metric. More
recently, lexical and syntactic simplification have
been simultaneously implemented via statistical
machine translation (Coster and Kauchak, 2011)
and English Wikipedia edit histories (Yatskar et
al., 2010). These studies did not directly evaluate
the success of lexical simplification.

DeBelder et al. (2010) add a form of word-
sense disambiguation to lexical simplification.
The authors use the latent variables from a
Bayesian network language model to suggest al-
ternate words in a text. An advantage of this
approach is that it does not necessarily rely on
specialized semantic databases like WordNet, nor
does it rely on psychological data to estimate
word difficulty. DeBelder and Moens (2010) use
this approach to simplify the syntax and lexicon
of text for children. They show an improvement
of about 12% in accuracy, as assessed by hu-
man judges, over the baseline model that simply
chooses the most frequent synonym.

Lexical simplification within a sentence con-
text was a SemEval-2012 task (Specia et al.,
2012). The best of five submitted systems

employed word frequency as well as context-
dependent information. The authors conclude that
research is needed that evaluates the role of con-
text in the simplification of all words in a context.
The present paper extends preliminary results in
(Anderson et al., 2011), describing derivation of a
small, simplified vocabulary in which the context
is the entire document: lexical choice decisions
are made simultaneously and for an entire docu-
ment, not sentence by sentence.

3 Reducing Vocabulary Size

3.1 Algorithms
We developed and tested six methods for gener-
ating the reduced lexicon. Given a starting docu-
ment in standard English, we tag the text using
the Stanford Part of Speech Tagger (Toutanova
and Manning, 2000), extract all and only the
occurrences of the part of speech we are inter-
ested in, and reduce each word occurrence to its
base uninflected form using WordNet’s morphstr
method. 2 We explored three levels of word-
sense disambiguation: none, weak, and strong
disambiguation. This step produced a base set
from which we generate a reduced lexicon using
frequency-based selection, weights generated by
disambiguation, or a greedy algorithm described
below. We discuss the disambiguation step and
then the vocabulary reduction step, concluding
with an overview of the resulting six algorithms.

Disambiguation Step
Both strong and weak word-sense disambigua-

tion employed the approach of (Agirre and Soroa,
2009).3 The PageRank algorithm underlying PPR
permits synsets to vote for one another depending
on WordNet’s graph structure and the weight of
each synset. This voting process is iterated un-
til it converges to a stable solution that ranks ver-
tices in a graph based on their relative importance.
In weak disambiguation, each word appearing in
the starting document is weighted proportional to
the count of that word. All other synsets are ini-
tialized with weight zero, and PPR is performed
once for the entire document. Strong disambigua-
tion processes words one at a time by weighting

2We limit our focus to nouns and verbs, working with
each part of speech independently.

3http://ixa2.si.ehu.es/ukb/
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its neighboring words in the original text. Agirre
and Soroa obtained superior disambiguation per-
formance with this method, which they call w2w.

Lexicon Reduction Step
The lexical reduction step begins with the set of

word senses from the first step and reduces these
to a lexicon of any desired size. The two simplest
algorithms merely select those N words with the
highest frequency or those with the highest PPR
weight after convergence.

We contrast simple reduction with a “greedy”
information approach. The greedy algorithm con-
structs a subtree of WordNet containing all the
words of a base set constructed by the first step.
The WordNet graph for nouns is a tree with the
word entity as it root. The graph for verbs is not
a tree, lacking a common unique ancestor node;
there are at least 15 different head nodes, and hun-
dreds of verbs with no unique ancestor (Richens,
2008). We force a tree structure for the verb graph
by adding a new node, which is made the parent
of all the root nodes in the original verb forest.

We add to each tree node a count: for leaves,
this is the number of occurrences of that word
sense in the original document; for internal nodes,
it is the sum of its own occurrences and its chil-
dren’s counts.

The objective of lexical reduction is to derive
an optimal set of hypernyms, H , for the docu-
ment. Initially H contains only the root node. The
algorithm works its way down the constructed
subtree, at each step evaluating every child of
every node already in H , and greedily adding
the child that maximizes information gain to the
growing lexicon; see Figure 1. Note that the se-
quence of choices of locally optimal children may
not lead to a globally optimal solution.

The information gained when a child is added
to the hypernym set is computed via
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where c is the number of word occurrences cov-
ered by the child synset and p is the number of
word occurrences covered by its parent. At each
iteration, this guarantees that the node that max-
imizes information gain, given prior choices, is
added to H; the number of word occurrences it

covers is subtracted from its parent’s count, as the
newly added node is now the covering synset for
those occurrences. If the parent synset no longer
covers any word occurrences – that is, if its count
reaches zero – then it is removed from H . Itera-
tions continue until H reaches its target size.

Algorithms
Combining disambiguation and lexical reduc-

tion steps, we implemented and evaluated six of
the resulting algorithms to create lexicons of pre-
specified size N .

Frequency-based (Baseline) As a baseline, we
follow the approach of (Carroll et al., 1998) and
employ word frequency as a surrogate measure
of simplicity. After disambiguating words using
strong disambiguation (w2w), we then select as
our lexicon those N words which have the great-
est combined frequency as measured by the prod-
uct of document frequency and frequency of oc-
currence in the Web1T corpus (Brants and Franz,
2006). Only unigram and bigram frequencies
were employed. Given any word in the original
vocabulary, we can traverse up the tree from it un-
til we reach the first node that is a member of the
lexicon; we say this is the lexicon element that
covers the word. Note that a lexicon H will not
necessarily cover every word in the initial docu-
ment.

No Disambiguation (Greedy) No disambigua-
tion is used. Each word’s number of occurrences
is credited to every one of its senses, so the base
set consists of all senses of every word (that is the
proper part of speech) in the document. Lexical
reduction employs the Greedy algorithm.

Personalized PageRank, Top-N (PPR-N) For
each word appearing in the starting document, we
find the corresponding synset(s) in WordNet and
assign them weights proportional to the count of
occurrences of that word. All other synsets are
initialized with weight zero. After convergence
of PPR, the N highest-weight synsets in the result
comprise the reduced lexicon H . Again, H may
not cover every word in the initial document.

Estimated Proportions of Word Sense Occur-
rences (PPR-WSD-G) Full PPR-W2W word
sense disambiguation is time-consuming, requir-
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Initialize hypernym set H to contain the root of the tree: {entity}
While H has not reached its final size,

for each child c of each element p in H,
compute information gained if c is added to H

let x be the child that maximizes information gain; insert x into H
subtract x’s count from its parent’s count
if x’s parent no longer covers any vocabulary, remove x’s parent from H

Figure 1: Pseudocode for greedy algorithm

ing hours for longer articles. In the PPR-WSD-
G approach, rather than performing full disam-
biguation of each word occurrence, we created a
“context” consisting of the full set of words of the
desired part of speech appearing in the document.
Weight was assigned to every sense of each word,
proportional to the number of occurrences of that
word. PPR was run on this context, which we an-
ticipated would concentrate weight in those parts
of the tree where multiple weighty synsets rein-
forced each other, and thus for narrowly focused
documents might give a reasonably accurate al-
though approximate estimate of the comparative
relevance of different senses of a given word.

For each word in the initial vocabulary, all its
WordNet senses were ranked in decreasing or-
der of their PPR-generated weights. The senses
whose weights were less than 30% 4 of the highest
weight for this word were eliminated; the count of
occurrences of this word was then distributed over
the remaining senses, proportional to their PPR
weights. The Greedy algorithm was then applied
to shrink this set.

Weak Disambiguation (PPR-VOC-G) In this
algorithm the entire initial vocabulary list was
treated as a context for the PPR algorithm. We
chose a base set approximately the same size as
the starting list of unique words in the document.
The PPR weights were multiplicatively scaled to
provide the “counts” for this base set. The Greedy
algorithm was then applied.

Strong Disambiguation, Top-N (PPR-W2W-
G) The strongest context-based disambiguation
(PPR-W2W) creates a vocabulary that is then re-
duced by application of the Greedy algorithm.

4Found via parametric testing.

3.2 Evaluation of Reduced Vocabularies

The ideal reduced lexicon would be capable of
representing the same concepts as the original vo-
cabulary, but using far fewer words. However,
as lexicon size decreases, the semantic precision
of expression tends to decrease as well; conse-
quently, measures of the semantic quality of a lex-
icon are needed to assess our results.

Our primary evaluation of the algorithms is
based on a comparison of lexicons from human-
simplified text with those we generate algorith-
mically from non-simplified text. Specifically,
articles and simplified versions of articles on
the same topics were obtained from the English
Wikipedia (EW) and Simple English Wikipedia
(SEW) (Wikipedia, 2010). English Wikipedia ar-
ticles contain a reasonably large sample of stan-
dard English written by diverse authors covering
a range of topics. Simplified articles are not usu-
ally direct simplifications of original articles from
the EW: a simplified article generally covers only
a subset of the topics covered by the original ar-
ticle using a simpler grammar and lexicon. Con-
sequently, reducing the lexicon of EW articles to
that of SEW articles represents a difficult task for
any lexical simplification algorithm.

Text and Simplified Text Corpora

All six algorithms were applied to a set of ten
articles found in the SEW. We selected articles
from the SEW that were listed as “good” simpli-
fied articles by managers of Wikipedia, that had
at least three paragraphs of prose, and that had a
majority of sections that appeared to correspond
to sections in articles in the EW. All articles were
manually edited to remove images, tables, and
references, and to retain only those topics, usu-
ally indicated by sections, found in both the orig-
inal and simplified article. We applied the Stan-
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Chop City Evol Goth Hum Mon Okla RRH Sat Snake
Noun, EW 326 341 817 634 1141 587 817 399 440 225
Noun, SEW 208 136 511 434 390 338 285 228 224 68
Noun, common 145 52 265 295 266 255 232 119 161 34
Verb, EW 161 99 315 221 311 177 207 164 149 127
Verb, SEW 90 43 172 128 119 102 80 85 87 47
Verb, common 61 19 103 73 77 63 43 52 59 23

Table 1: Unique word counts for EW and SEW articles, and the number of words EW and SEW have in common

ford Part of Speech Tagger (Toutanova and Man-
ning, 2000) to isolate nouns and verbs from all
documents; resulting noun lexicons from SEW
are 30–68% of the size of the EW’s vocabulary,
while for verb lexicons the corresponding figures
are 37–58% (see Table 1). The number of unique
nouns in the EW articles varied from 225–1141,
with the number of unique nouns in SEW articles
ranging from 68–511. Similarly, there were 99-
315 unique verbs in the EW articles, and 43-172
unique verbs in the SEW articles.

Comparing the noun and verb counts, we note
that the number of unique verbs is about half the
number of unique nouns. The verb count varies
less across the ten articles, suggesting that, as arti-
cles grow longer, they incoporate more additional
nouns than additional verbs. Table 1 also indi-
cates the degree of overlap among the noun and
verb lexicons for each pair of articles.

Evaluation Measures
Let us call the vocabulary (restricted to a single

part of speech) of an EW article L, and the vo-
cabulary of the SEW article on the same topic S.
Then we apply one of our algorithms, described
above, to L in order to produce a reduced lexicon
(or hypernym set) H . We use two measures to
assess the quality of the hypernym set. Our first
measure, affinity, is used to measure the semantic
distance between L and the H generated from it,
in order to assess whether expressivity has been
adequately retained. The second, Symmetric Vo-
cabulary Distance, is used to measure the seman-
tic distance between the automatically-generated
H and S, under the assumption that the vocabu-
lary of the human-simplified text (S) is a reason-
able proxy for a human-approved reduction of L.
We set the desired size of H to be the size of S,
so that we can fairly compare the semantic space

covered by H to that covered by S.

Affinity Between Starting Vocabulary and Hy-
pernym Set Intuitively, we aim to generate a
precise lexicon, i.e. one in which the semantic
distance between the starting vocabulary and the
reduced lexicon is minimized; thus the most pre-
cise lexicon is the original vocabulary. To opera-
tionalize this intuition, we experimented with sev-
eral distance measures based on path distance in
the WordNet tree (Budanitsky and Hirst, 2006)
and ultimately adapted a scoring measure pro-
posed in (Widdows, 2003), which finds the dis-
tance in the WordNet subtree between a vocab-
ulary word’s sense and its nearest ancestor (hy-
pernym) in the lexicon. Widdows calls the in-
verse square of this distance the affinity score for
that word. Suppose there are N vocabulary word
senses in the base set L, and dist(x) is the dis-
tance (number of edges plus one) in the tree from
a word sense x to its hypernym in the reduced lex-
icon H , or∞ if there is no such hypernym. If c is
defined to be the weight (number of occurrences
in the document) of the current sense, and C is
the summed weight of the entire vocabulary, then
our distance measure is defined as:

1
C
∗

N∑
i=1

{
c

dist(i)2 if dist(i) 6=∞
−c
4 if dist(i) =∞

(1)

Affinity scores increase as distance between
synsets decreases.

Symmetric Vocabulary Distance When com-
paring two vocabularies, an intuitive measure of
difference is the semantic distance between a
word in the first vocabulary and the word in the
second that is semantically nearest to it. This in-
tuition leads to the following definition of vocab-
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ulary distance. Let d(a, b) denote a measure of
semantic distance between words a and b, here
measured by the count of WordNet edges in the
shortest path from a to b. Suppose the vocabu-
lary and reduced lexicon are represented as sets S
and H , respectively. We define the distance be-
tween a word, s ∈ S and (the entire) lexicon H to
be d(s, H) = minh∈Hd(s, h). Summing over all
the elements of S gives a distance measure that is
asymmetric, and we therefore define the symmet-
ric distance between S and H by

d(H,S) =
∑

s∈S d(s, H) +
∑

h∈H d(h, S)
2

.

4 Evaluation Results

Average affinity scores between vocabulary
words in L and their nearest (covering) hyper-
nyms in H are shown in Figure 2. Intervals were
generated using bootstrap resampling with 95%
confidence. Looking at the results for nouns first,
confidence intervals indicate a significant differ-
ence between the top two algorithms, Greedy and
PPR-W2W-G. For purposes of comparison, we
note that these “best” scores are lower than those
reported by Widdows (2003) for class labels that
correctly classify nouns. In that study Widdows
found that affinity scores in the range (0.67, 0.91)
were indicative of correct class labels for common
nouns, but that affinity scores of about 0.57 indi-
cated incorrect labels. Turning to verbs, again the
best results are produced by the PPR-W2W-G al-
gorithm, and again this algorithm appears signifi-
cantly better than the rest of the algorithms, none
of which appear significantly better than the oth-
ers. In all cases, the results for verbs appear better
than the results for nouns; this is at least partly ex-
plained by the shallowness of the WordNet verb
hierarchy, as compared to the noun hierarchy.

The symmetric distances in Table 3 show the
distances between automatically reduced lexicons
(H) as compared to the vocabulary from human-
simplified text (S). Our algorithms construct lex-
icons that are on average 1-2 edges away from
the manually simplified lexicon; these words are
much nearer than those in randomly selected lexi-
cons, which are experimentally measured in lexi-
cons of size 100 to 1000 as about 7 to 4 edges dis-
tant for nouns and 5 to 3 edges distant for verbs.

Based on the average results, for both nouns
and verbs the best performing algorithm is again
PPR-W2W-G. The other algorithms have distance
scores similar to those of the frequency-based
baseline. Word sense disambiguation appears
to improve the precision of the reduced lexicon,
though the differences are only sometimes clearly
significant. As is the case for the affinity measure,
the symmetric vocabulary distances for verbs ap-
pear better than for nouns, for every algorithm, in
some cases significantly so. Here the difference
in the percentage of shared unique verbs (60% on
average) vs. shared unique nouns (51% on aver-
age) between the EW and SEW articles (L and S)
may explain some of this apparent superiority of
verb results.

Another way to consider these vocabulary dis-
tance results is to compare them to the vocab-
ulary distance of the EW and SEW versions of
each article. If the algorithms are successful, we
expect the average distance between the reduced
lexicons of the full article and the original vocab-
ulary of the human-simplified articles (H and S)
to be less than the distance between the original
and human-simplified (L and S) lexicons them-
selves. The average distance between the original
full and simplified lexicons (H and S) is 1.97 for
nouns and 1.45 for verbs, compared with 1.50 and
1.16 respectively between L and S for the reduced
lexicons produced by the best performing algo-
rithm (PPR-W2W-G), a 24% and 12% improve-
ment, respectively.

Examples of Vocabulary Substitution
Two examples of vocabulary replacement for

verbs are shown below. We use the evolution arti-
cle from the EW, which has 458 unique verbs (the
largest number among our ten articles). The SEW
article on the same topic has 272 unique verbs,
and so we produce a reduced lexicon of the same
size, a 41% reduction, using the best-performing
algorithm, PPR-W2W-G.

In the EW article on evolution, we find the sen-
tence

“IF ONE SPECIES CAN OUT-COMPETE ANOTHER,
THIS COULD PRODUCE SPECIES SELECTION, WITH
THE FITTER SPECIES SURVIVING AND THE OTHER
SPECIES BEING DRIVEN TO EXTINCTION.”

Four verbs are marked as such by the W2W
word sense disambiguation algorithm; in their
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Algorithm Nouns Verbs
Avg. Distance 95% C.I. Avg. Distance 95% C.I.

Baseline 0.20 (0.15, 0.26) 0.19 (0.13, 0.26)
Greedy 0.32 (0.23, 0.40) 0.49 (0.46, 0.53)
PPR-N 0.01 (-0.03, 0.06) 0.48 (0.42, 0.54)
PPR-V-G 0.14 (0.11,0.17) 0.51 (0.46, 0.55)
PPR-WSD-G 0.15 (0.13, 0.17) 0.45 (0.39, 0.52)
PPR-W2W-G 0.65 (0.56, 0.72) 0.76 (0.72, 0.80)

Table 2: Average affinities between vocabulary words (from the EW articles) and their nearest hypernyms; higher
is better. The averages and 95% confidence intervals are shown for each algorithm.

Algorithm Nouns Verbs
Avg. Distance 95% C.I. Avg. Distance 95% C.I.

Baseline 1.93 (1.68, 2.25) 1.35 (1.20,1.52)
Greedy 2.04 (1.77, 2.37) 1.31 (1.22,1.41)
PPR-N 1.85 (1.66, 2.09) 1.58 (1.43,1.74)
PPR-V-G 1.87 (1.63, 2.12) 1.29 (1.20,1.40)
PPR-WSD-G 1.90 (1.63, 2.20) 1.65 (1.47,1.81)
PPR-W2W-G 1.50 (1.33, 1.73) 1.16 (1.04,1.29)

Table 3: Average distances between reduced size noun and verb lexicons, automatically generated from EW
articles, and vocabularies extracted from the SEW human-simplified articles on the same topics; lower is better.

root forms they are produce, survive, be, drive.
The hypernyms selected for each verb by the
PPR-W2W-G algorithm are inserted into the sen-
tence below5; we manually modified each verb
tense to match:

“IF ONE SPECIES CAN OUT-COMPETE ANOTHER,
THIS COULD (PRODUCE) SPECIES SELECTION, WITH

THE FITTER SPECIES (LIVING) AND THE OTHER

SPECIES (BEING) (MOVED) TO EXTINCTION.”

An example that did not give very satisfying
results is:

“FOR EXAMPLE, MORE THAN A MILLION COPIES
OF THE ALU SEQUENCE ARE PRESENT IN THE HU-
MAN GENOME, AND THESE SEQUENCES HAVE NOW
BEEN RECRUITED TO PERFORM FUNCTIONS SUCH
AS REGULATING GENE EXPRESSION.”

Here, the verbs that are marked as such are be,
recruit, perform, regulate. The closest hypernym
for recruit, perform, and regulate is the root node
we added to the verb graph to make it a tree. The
words recruit and regulate each appears only once
in the entire article, and perform only twice (both

5The hypernyms are synsets rather than words; we sim-
ply took the first word from each synset.

times with the same sense). Words that appear
rarely may not be worth inclusion in the reduced
lexicon, especially given a very limited lexicon
size. One could attempt to automatically detect
such cases, considering infrequency of word use
and distance from a word to its nearest hypernym.

Vocabulary Reduction as Simplification

We estimated the difficulty of the various vo-
cabularies derived by the best-performing PPR-
W2W-G algorithm by calculating the average
Kucera-Francis word frequency over all words in
the vocabulary. Multi-word lexical items (e.g.,
‘get the better of’) which are not found in the fre-
quency data were excluded. In addition, words
with more than one sense are conflated in the
frequency counts and are therefore all senses are
treated as a single entry for purposes of measur-
ing frequency. In the case of noun vocabularies,
the reduced lexicon found by the PPR-W2W-G
algorithm had an average frequency of 123, lying
nearer the average frequency of nouns in the EW
article (109) than that of the simplified SEW ar-
ticle (153). The average verb frequency score of
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the reduced lexicon (243) was nearer the simpli-
fied score (290) than the wiki score (163). Thus,
in both instances the reduced vocabulary consists
of more frequently occurring, and thus arguably
simpler, words than the original full vocabulary.

5 Discussion

Our results show that the greedy maximization
of information can be combined with word sense
disambiguation to yield an algorithm for the au-
tomated generation of a reduced lexicon for text
documents. Among the six algorithms, we found
significant differences between an approach that
ignores word sense ambiguity and those that ad-
dress this ambiguity explicitly. The introduction
of multiple senses for every word, most of which
are unintended in the original document, intro-
duces sense ambiguity that is not overcome by
document word counts, even if those counts are
readjusted to weight likely senses. Early word
sense disambiguation takes advantage of phrase
and sentence context (unavailable at later stages
of processing) and results in a smaller tree to be
searched.

Comparison of the best algorithm (PPR-W2W-
G) with the word-frequency Baseline suggests to
the relevance of the semantic hierarchy in addi-
tion to word-sense disambiguation. The Baseline
algorithm uses full word-sense disambiguation,
but not the semantic hierarchy of Wordnet. PPR-
W2W-G uses both types of semantic information.
The superiority of PPR-W2W-G may also be a
by-product of evaluation measures that are based
on a Wordnet-based definition of semantic dis-
tance. In the future, a better test of the relative
importance of the two aspects of semantics may
be obtained from other judgements of semantic
similarity.

One would intuitively expect that lexical sim-
plification is optimally implemented at the level
of the document, not the sentence. Although
our algorithm does not explicitly select “simple”
words for the lexicon, the combined algorithm
yields a lexicon in which most words are only
1-2 edges away from human-simplified counter-
parts. Since our greedy search of WordNet is
top-down, our hypernyms lie above the words
drawn from the original document; our intuition
that these more general words tend to be simpler

is supported by the higher average frequency of
the resulting lexicons. These results do not offer
a complete approach to lexical simplification, but
suggest a role for contextualized semantics and
appropriate knowledge-based techniques.
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