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Abstract

In this article, we test a word vector space
model using direct evaluation methods. We
show that independent component analysis
is able to automatically produce meaning-
ful components that correspond to semantic
category labels. We also study the amount
of features needed to represent a category
using feature selection with syntactic and
semantic category test sets.

1 Introduction

The concept of semantic similarity or the broader
concept of semantic relatedness is central in many
NLP-related applications. The representations
that are used range from thesauri to vector space
models (Budanitsky and Hirst, 2006). Seman-
tic similarity can be measured as a distance be-
tween representations of words; as vector similar-
ity in a vector space model, or as a path length
in a structured representation e.g, an ontology.
For humans, the notion of semantic similarity of-
ten means perceiving two words sharing similar
traits: synonyms likecar:automobile, hypernyms
vehicle:caror antonymsshort:long (Turney and
Pantel, 2010).

Earlier research has shown that it is possible
to learn automatically linguistic representations
that reflect syntactic and semantic characteristics
of words. In particular, independent component
analysis (ICA) can be used to learn sparse repre-
sentations in which components have a meaning-
ful linguistic interpretation. However, earlier re-
sults cannot be considered conclusive especially
when semantic relations and semantic similarity

are considered. We present results of a systematic
analysis that focuses on semantic similarity using
manually built resources as a basis for evaluation
of automatically generated vector space model
(VSM) representation. We concentrate on word
vector spaces based on co-occurrence data. These
can be evaluated directly by comparing distances
between word pairs or groups of words judged
similar by human evaluators. In this article, we
describe several test sets used for semantic eval-
uation of vector space models, and validate our
model with them. We then explore how many
features are required to distinguish the categories
with a feature selection algorithm. Further, we
measure how well ICA is able to automatically
find components that match semantic categories
of words.

2 Methods

2.1 Vector space models

VSMs contain distributional information about
words derived from large text corpora. They are
based on the idea that words that appear in sim-
ilar contexts in the text are semantically related,
and that relatedness translates into proximity of
the vector representations (Schütze, 1993). In in-
formation retrieval and many other tasks, topic
representations using term-document matrices are
often employed. In the same fashion, word vector
spaces are built using the more immediate con-
text of a word. Similarity measures for vector
spaces are numerous. For VSMs, they have been
extensively tested for example by Bullinaria and
Levy (2007). In this work, we use the cosine
similarity (Landauer and Dumais, 1997), which is
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most commonly used (Turney and Pantel, 2010).
The simple way of obtaining a raw word

co-occurrence count representation forN target
words is to considerC context words that occur
inside a window of lengthl positioned around
each occurrence of the target words. An accu-
mulation of the co-occurrences creates a word-
occurrence matrixXC×N . Different context
sizes yield representations with different infor-
mation. Sahlgren (2006) notes that small con-
texts (of a few words around the target word),
give rise to paradigmatic relationships between
words, whereas longer contexts find words with
syntagmatic relationship between them. For a
review on the current state of the art for vec-
tor space models using word-document, word-
context or pair-pattern matrices using singular
value decomposition-based approaches in dimen-
sionality reduction, see Turney and Pantel (2010).

2.2 Word spaces with SVD, ICA and SENNA

The standard co-occurrence vectors for words can
be very high-dimensional even if the intrinsic di-
mensionality of word context information is ac-
tually low (Karlgren et al., 2008; Kivim̈aki et al.,
2010), which calls for an informed way to reduce
the data dimensionality, while retaining enough
information. In our experiments, we apply two
computational methods, singular value decompo-
sition (SVD) and ICA, to reduce the dimensional-
ity of the data vectors and to restructure the word
space.

Both the SVD and ICA methods extract com-
ponents that are linear mixtures of the original
dimensions. SVD is a general dimension reduc-
tion method, applied for example in latent seman-
tic analysis (LSA) (Landauer and Dumais, 1997)
in the linguistic domain. The LSA method rep-
resents word vectors in an orthogonal basis. ICA
finds statistically independent components which
is a stronger requirement and the emerging fea-
tures are easier to interpret than the SVD features
(Honkela et al., 2010).

Truncated SVD approximates the matrix
XC×N as a productUDV T in which Dd×d is a
diagonal matrix with square roots of thed largest
eigenvalues ofXTX (or XXT ), UC×d has thed
corresponding eigenvectors ofXXT , andVN×d

has thed corresponding eigenvectors ofXTX.

The rows ofVN×d give ad-dimensional represen-
tation for the target words.

ICA (Comon, 1994; Hyv̈arinen et al., 2001)
represents the matrixXC×N as a productAS,
whereAC×d is a mixing matrix, andSd×N con-
tains the independent components. The columns
for the matrixSd×N give a d-dimensional rep-
resentation for the target words. The FastICA
algorithm for ICA estimates the model in two
stages: 1) dimensionality reduction and whiten-
ing (decorrelation and variance normalization),
and 2) rotation to maximize the statistical inde-
pendence of the components (Hyvärinen and Oja,
1997). The dimensionality reduction and decor-
relation step can be computed, for instance, with
principal component analysis or SVD.

We compare the results obtained with dimen-
sion reduction to a set of 50 feature vectors from
a system called SENNA (Collobert et al., 2011)1.
SENNA is a labeling system suitable for sev-
eral tagging tasks: part of speech tagging, named
entity recognition, chunking and semantic role
labeling. The feature vectors for a vocabulary
of 130 000 words are obtained by using large
amounts of unlabeled data from Wikipedia. In
training, unlabeled data is used in a supervised
setting. The system is presented a target word in
its context of 5+5 (preceding+following) words
with a ’correct’ class label. An ’incorrect’ class
sample is constructed by substituting the target
word with a random one and keeping the con-
text otherwise intact. The results in the tagging
tasks are at the level of the state of the art, which
is why we want to compare these representations
with the direct evaluation tests.

2.3 Direct evaluation

In addition to indirect evaluation of vector space
models in applications, several tests for direct
evaluation of word vector spaces have been pro-
posed see e.g., Sahlgren (2006) and Bullinaria
and Levy (2007). First we describe the seman-
tic and syntactic category tests. Here, acategory
means a group of words with a given class label.
The precisionP in the category task is calculated
according to (Levy et al., 1998). A centroid for
each category is calculated as an arithmetic mean
of the word vectors belonging to that category.

1http://ronan.collobert.com/senna/
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The distances from each word vector to all cat-
egory centroids are then calculated, recalculating
the category centroid for the query to exclude the
query vector. The precision is then the percent-
age of the words for which the closest centroid
matches the category the word is labeled with.

The semantic category test (Semcat) set2 is
used for example in (Bullinaria and Levy, 2007).
This set contains 53 categories with 10 words in
each category, based on the 56 categories col-
lected by Battig and Montague (1969). Some
word forms appear in more than one category, for
exampleorangein FRUIT and inCOLOR, andbi-
cycle in TOY, and inVEHICLE. We made some
slight changes to the test set by changing the
British English spelling of a limited number of
words back into American English (e.g.,millime-
tre-millimeter) to better conform to the English
used in the Wikipedia corpus.

We also consider two different syntactic cat-
egory test alternatives. Bullinariaet al. (1997;
2007) use ten narrow syntactic categories, sep-
arating noun and verb forms in own categories,
whereas Sahlgren (2006) uses eight broad cate-
gories. In this article, we compare both of these
approaches. As neither of these test sets were
publicly available, we constructed our own apply-
ing the most common part-of-speech (POS) tags
from the Penn Treebank tag set (Marcus et al.,
1993) to 3 000 most frequent words in our vo-
cabulary. We call the built test sets Syncat1 and
Syncat2. In Syncat1, the 50 most frequent words
in 10 narrow POS categories: Singular or mass
nouns (NN), plural nouns (NNS), singular proper
nouns (NNP), adjectives in base form (JJ), ad-
verbials in base form (RB), verbs in base form
(VB), verbs in past participle form (VBN), verbs
in ing-form (VBG), cardinal numbers (CD), and
prepositions or subordinating conjunctions (IN).
In (Levy et al., 1998) the last category contains
only prepositions, but the Penn Treebank tagset
does not separate between subordinating conjunc-
tions and prepositions. Syncat2 contains 20 most
frequent words in seven broader POS categories:
nouns, verbs, adjectives, adverbs, prepositions,
determiners, and conjunctions. In the open cat-
egories; nouns, verbs, adjectives and adverbs, the
words can be in any of the tagged forms. The

2http://www.cs.bham.ac.uk/ jxb/corpus.html

original experiments (Sahlgren, 2006) contain a
category named ’conjunctions’, which we created
by combining the aforementioned IN-category
which contains also prepositions with coordinat-
ing conjunctions (CC). The interjection category
(UH) from the original work was left out due to
the infrequency of such words in the Wikipedia
corpus.

In addition to category tests, synonymy can
also be directly measured, for example with a
multiple choice test, where synonyms should be
closer to each other than the alternatives. The
most commonly used test for VSMs is the Test
of English as a Foreign Language (TOEFL) (Lan-
dauer and Dumais, 1997), although other simi-
lar tests, such as English as a Second Language
(ESL) and SAT college entrance exam (Turney,
2001; Turney, 2005), are also available. In ad-
dition, one can easily construct similar multiple-
choice tests based on, for example, thesauri and
random alternatives. Bullinaria et al. (1997;
2007; 2012) use a test which consists of related
word pairs, e.g.,thunder-lightning, black-white,
brother-sister. The distance from a cue word to
the related word is then compared to randomly
picked words with a similar frequency in the cor-
pus3. In addition to semantic similarity, Deese
antonym pairs (Deese, 1954), have been used for
VSM evaluation (Grefenstette, 1992). We employ
a similar procedure described above for the re-
lated words. The precision is calculated by check-
ing how often the cue and the correct answer are
closest – with a comparison to eight randomly
picked words for each cue word.

2.4 Forward feature selection with entropy

The forward feature selection method is a simple
greedy algorithm. At each step, the algorithm se-
lects the single feature that best improves the re-
sult measured by an evaluation criteria, without
ever removing already selected features. The al-
gorithm stops when all features are selected, or a
stopping criterion is triggered. Compared to an
exhaustive feature search, which has to evaluate
all possible feature combinations, onlyd(d+1)/2
different input sets have to be evaluated, where
d is the desired number of features (Sorjamaa,
2010). Reaching the global optimum is not guar-

3http://www.cs.bham.ac.uk/j̃xb/corpus.html
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anteed because the forward feature selection algo-
rithm can get stuck in a local minimum. However,
an exhaustive search is not computationally feasi-
ble given the large number of features in our case.

In our experiments, Shannon’s entropy, based
on category distributions in cluster evaluation, is
our selected criterion for feature selection (Celeux
and Govaert, 1991). The number of clusters is
set equal to the number of categories, with the
cluster centroid as the centroid for words in the
category. Each word is assigned to the cluster
with the closest cluster centroid (Tan et al., 2005,
Ch. 8, p. 549). The entropy is highest if each
cluster contains only one word from each cate-
gory, and lowest when each cluster contains only
words from one category. In our feature selec-
tion task, we measure a single category against all
other categories and have only two clusters. We
then compare the performance of provided cate-
gories (class labels) and groups of words selected
randomly.

3 Data and preprocessing

Our data consists of all the documents in the En-
glish Wikipedia4 that are over 2k in size after
removal of the wikimedia tags. In preprocess-
ing, all words are lowercased and punctuation
is removed, except for hyphens and apostrophes.
The vocabulary consists of 200 000 most frequent
types. The context vocabulary used to build
the word vectors consists of 5 000 most frequent
types. The total number of times the 200 000
types occur together in the corpus is slightly over
326 million, and the least frequent word occurs
26 times in the corpus. The least frequent context
word occurs 6 803 times in the corpus.

In previous work, small windows have corre-
sponded the best to paradigmatic relationship be-
tween words, which is what most of the direct
evaluation tests described above measure. This
why we use a small window of three (l = 3) in the
experiments, which corresponds to capturing the
previous and the following word around a target
word. The word frequency in the whole corpus
biases the raw co-occurrence frequency counts.
Several weighting schemes that dampen the ef-

4The October 2008 edition, which is no longer
available at the Wikipedia dump download site
http://dumps.wikimedia.org/enwiki/

fect of the most frequent words have been pro-
posed. We use positive point-wise mutual infor-
mation (PPMI) weighting (Niwa and Nitta, 1994),
which gave best results in the evaluation tests by
Bullinaria and Levy (2007).

4 Experiments and results

4.1 Direct VSM evaluation

We first validate our model with the syntactic
and semantic tests (Semcat, Syncat1, Syncat2,
TOEFL, related word pairs (Distance), and Deese
antonyms (Deese)). The results for the seman-
tic and syntactic tests are summarized in Table 1.
The results for the our VSM for the semantic cat-
egorization, distance, and TOEFL tests are in line
with results for the same number of features in
(Bullinaria and Levy, 2012). The SENNA results
for the syntactic tests beat our simple system and
even though the training does not contain seman-
tic information, the results in the semantic test are
only slightly worse than our results, which may
also be due to the fact that the system has a larger
context window. We also reduced the dimension-
ality of the vector space to 50 with SVD and ICA,
and performed the testing. Using only 50 dimen-
sions is not enough to capture all the meaning-
ful information from the 5 000 original dimen-
sions, compared to the 50 dimensions of SENNA,
but the SVD and ICA results can be produced in
about 10 minutes, whereas SENNA training takes
weeks (Collobert et al., 2011). To obtain results
equivalent to those with the 5000 features, we
tested a growing number of features: using ap-
proximately 500 ICA or SVD components would
be enough. We repeated the experiments for the
Semcat test and only took those word vectors that
represented the 530 words of the test set. In this
case, ICA and SVD are able to better represent the
dimensions of the interesting subset instead of the
whole vocabulary of 200 000 words, which makes
the error decrease considerably.

ICA and SVD perform equally well in dimen-
sionality reduction. This is not surprising, as ICA
can be thought as (1) whitening and dimension-
ality reduction followed by (2) an ICA rotation,
where (1) is usually computed with PCA. As (2)
does not change distances or angles between vec-
tors, any method that utilizes distances or an-
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gles between vectors finds very little difference
between PCA and ICA. As PCA and SVD are
closely related, the same reasoning can be applied
there. (Vicente et al., 2007)

4.2 Feature selection
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Figure 1: The average means with 95% confidence
intervals for entropy for the 53 semantic categories
(lower curve) and random categories (upper curve).
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Figure 2: The average means with 95% confidence in-
tervals for entropy for the 10 syntactic categories of
Syncat1 (lower curve) and random categories (upper
curve).

Figures 1, 2 and 3 show the results for the
semantic and syntactic feature selection experi-
ments. To help the visualization, only the con-
fidence intervals around the mean of the seman-
tic/syntactic categories and random categories are
shown. The results indicate that each category can
be easily separated from the rest by a few features
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Figure 3: The average means with 95% confidence
intervals for entropy for the 7 syntactic categories of
Syncat2 (lower curve) and random categories (upper
curve).

only. The randomly constructed categories can-
not be as easily separated, but the difference to
semantic categories diminishes as more features
are added.

Syncat1, where each category corresponds to a
single part of speech, gives very good separation
results, whereas the separation in the case of Syn-
cat2 is less complete. The separation of adjective,
adverb and determiner categories cannot be dis-
tinguished from the results of random categories.
Looking more closely at the most common words
labeled as adjectives, we see that most of them
can be also used as adverbs, nouns or even verbs,
e.g.,first, other, more, such, much, best, and un-
ambiguous adjectives e.g.,british, large, earlyare
a minority. Similar reasoning can be applied to
the adverbs. Determiners, on the other hand, may
exist in so many different kind of contexts, and
finding few context words (i.e. features) to de-
scribe them might be difficult.

We also looked at the first context word which
was selected for each semantic category, and in
40 cases out of 53 the first selected feature was
somehow related to the word of the category. We
found out that it was either a semantically related
noun or verb:A PRECIOUS STONE:ring, A REL-
ATIVE :adopted; the name or part of a name for
the category:A CRIME:crime, AN ELECTIVE OF-
FICE:elected; or a word that belongs to that cate-
gory: A KIND OF CLOTH:cotton, AN ARTICLE OF

FURNITURE:table.
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5 000 feat ICA50 SVD50 SENNA
Semcat 0.22 0.31/0.19 0.32/0.19 0.25 (R=0.98)
Syncat1 0.17 0.25 0.25 0.10
Syncat2 0.26 0.38 0.37 0.21
TOEFL 0.22 (R=0.95) 0.38 (R=0.95) 0.38 (R=0.95) 0.34 (R=0.91)
Distance 0.11 0.19 0.19 0.11
Deese 0.07 0.12 0.13 0.04

Table 1: The error,Err = 1 − P for different test sets and data sets. Recall is 1 unless otherwise stated. For
the Distance test the values reported are mean values over 50runs. For ICA and SVD, first values for Semcat
report the error when the dimensionality was reduced from the full 200 000 × 5 000 whereas the second values
are calculated for the Semcat subset530× 5 000 only.

4.3 Feature selection with ICA

As previous results suggest (Honkela et al., 2010),
ICA can produce components that are inter-
pretable. An analysis using 50 independent com-
ponents obtained by ICA was carried out for the
vector representations of the 530 words in the
Semcat data set, and forward feature selection
was then applied for each of the categories. The
results are shown in Fig. 4. The semantic cate-
gories separate better than the random categories
with only a few features in this experiment as
well, but as more features are added, the differ-
ence decreases. In Fig. 4 we show the reader
also some examples of the semantic categories for
which the entropy is smallest and largest.

In this experiment, we used 10-fold stratified
cross validation, choosing 90 % of the 530 words
as the training set and the rest was used as the
test set. I.e., when separating one category from
all the rest, 9 words were used as the represen-
tative of the tested category, 468 words as the
representative of the other categories from which
we separate, and the remaining 10% as the test
data set in the same relation. Reported results are
the averaged entropy over the different folds of
the cross validation. Between different folds, a
few same features were always chosen first, af-
ter which there was considerable variation. This
seems to indicate that the first 2-3 features se-
lected are the most important when a category is
separated from the rest. The results in case of the
SENNA data and SVD, left out due to space con-
straints are similar.
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Figure 4: Entropy for sample semantic categories us-
ing ICA components in feature selection, mean en-
tropy for random categories with 95% confidence
interval shown on dashed lines and mean entropy
over semantic categories with 95% confidence interval
shown with dotted lines over random categories.

4.4 Semantic information from independent
components

Earlier research has shown that ICA is able
to produce cognitively meaningful components
(Hansen et al., 2005) that correspond to, for in-
stance, noun concepts (Chagnaa et al., 2007),
phonological categories (Calderone, 2009), per-
sonal traits (Chung and Pennebaker, 2008) and
syntactic categories (Honkela et al., 2010). In this
work, we studied the interpretability of the ICA
components in a semantic task, using the Semcat
set, and compare the results to those obtained by
SVD and SENNA. For this, we study the activa-
tions of the components in theS-matrix. For each
component, we take a group of ten words, for
which the component has the highest activation
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and compare that group to the given categories.
The ICA components are usually skewed in one

direction. To see which words have most activa-
tion, it is often enough to check the skewness of
the distribution. We then selected the 10 words
for which the component activation was largest in
that direction. We applied two criteria,strict and
lax (similar to Sahlgren (2006)) to see how well
the components corresponded to the semcat cate-
gory labels. To fill thestrict criterion a minimum
of 9/10 words should belong to the same cate-
gory, and thelax criterion is defined as majority,
i.e., a minimum of6/10 words must belong to the
same category.

The selection of the subset of word vectors can
be done either before or after dimensionality re-
duction. It is obvious that if ICA or SVD is ap-
plied after the subset selection (subset+ICA), the
components are a better representation of only
those words, than if the subset selection is carried
out after a dimension reduction for the complete
matrix of 200 000 word vectors (ICA+subset). As
FastICA produces results which may vary from
a run to another due to random initialization, we
verified that the results stayed consistent on sub-
sequent runs.

The results are shown in Table 2. In sub-
set+dimensionality reduction case, ICA is able to
find 17 categories out of 53 with the strict cri-
terion, and 37 categories with the lax criterion.
Those categories that filled the strict criterion had
also the smallest entropy in the feature selec-
tion described earlier. We repeated the above-
described analysis evaluating separately the 10
smallest and 10 largest values of each SVD com-
ponent. SVD found found only two categories
which passed the strict test. For the relaxed condi-
tion, 19 categories passed. In the dimensionality
reduction+subset case, ICA is slightly better with
the lax criterion, whereas SVD finds three cate-
gories with the strict criterion. These results can
also be compared to SENNA results, in which no
categories passed the strict test, and 4 categories
passed the lax test.

As a separate experiment for subset + dimen-
sion reduction, we checked whether the features
that best represented these categories were also
those that were first selected by the feature selec-
tion algorithm. We found out that for 15 cate-

gories, the most prominent feature was also se-
lected first and for the two remaining categories,
the feature was selected second. For the relaxed
condition, for the 37 categories, the best feature
was selected first in 27 cases and second in 6 cat-
egories, and third in 2 categories.

Strict Lax
subset+ICA 17/53 37/53
ICA+subset 1/53 12/53
subset+SVD 2/53 19/53
SVD+subset 3/53 8/53
SENNA 0/52 4/52

Table 2: Fraction of categories which filled the strict
and lax condition for ICA, SVD and SENNA

A further analysis of the categories that failed
the relaxed test suggests several reasons for this.
A closer analysis shows that words from certain
categories tend to occur together, and these cate-
gories contain a common superordinate category:
For exampleNONALCOHOLIC and ALCOHOLIC

BEVERAGESare all beverages. Among the top 10
activations of a component, there are five words
from each of these categories, and among 20
highest activations for this component, 18 of them
come from one of these two categories. Similarly,
a component shows high activations for words
that form the female half of theRELATIVE: aunt,
sister, mother, together withdaisy, tulip, rose,
lily from FLOWER, which are also used as female
names. There are more overlapping categories
in which words may also belong to another cat-
egory than for which they are assigned, for ex-
ample TYPE OF DANCE and TYPE OF MUSIC;
SUBSTANCE FOR FLAVORING FOODand VEG-
ETABLE; the TYPE OF SHIPand VEHICLE; and
FOOTGEARandARTICLE OF CLOTHING and the
TYPE OF CLOTH. There results are in line with
the earlier result with the feature selection, where
unambiguous categories separated better than the
more ambiguous ones. There are four categories
which cannot be described by a single compo-
nent in any way:KITCHEN UTENSIL, ARTICLE

OF FURNITURE, CARPENTER’ S TOOL and TOY.
The words in these categories have activations in
different ICA components, which suggests that
the most common usage is not the one invoked by
the given category. For example, inTOY category,
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wordsbicycleandtricyclego with the words from
VEHICLE andblock has an active feature which
also describesPARTS OF A BUILDING or FURNI-
TURE.

5 Discussion

The semantic category test set is based on stud-
ies of human similarity judgment, which for even
with a large group of responses, is quite subjec-
tive. The ICA analysis shows that meaning of
the surface forms for some words based on the
corpus data are different than the one it is la-
beled with. For example,bassfrom theFISH cat-
egory had a strong activation for a feature which
representedMUSICAL INSTRUMENT. This is ob-
viously a downside of our method which relies
on the bag-of-words representation without tak-
ing into account the sense of the word.

We saw that the dimension reduction applied
as drastically as we did worsens the evaluation
results considerably. The 50-dimensional feature
vectors of SENNA produce better results in many
of the tasks excluding the TOEFL and the seman-
tic categorization, but definite conclusions on the
performance cannot be made, as the SENNA is
not trained with the exactly same data. Another
downside of SENNA is the very long training. In
this paper, we opted to have the simplest word
space without taking into account word senses,
elaborate windowing schemes or such. The cur-
rent paper does not address the feature selection
as a means for reducing the dimensionality as
such, but it is an interesting direction for future
work. Karlgren et al. (2008) suggest studying the
local dimensionality around each word, as most
vectors in a high-dimensional vector space are in
an orthogonal angle to each other. We found out
that the first features are most important in rep-
resenting a semantic category of 10 words, and
an unreported experiment with 300 ICA features
showed that the features included last had a neg-
ative impact to the separation of the categories.
Cross-validation results showed that the selected
ICA features were also useful with a held-out set.

6 Conclusions

This paper describes direct evaluation tests for
word vector space models. In these tests, ICA

and SVD perform equally well as dimensional-
ity reduction methods. Further, the work shows
that only a small number of features was needed
to distinguish a group of words forming a seman-
tic category from others. Our experiments with
the random categories show that there is a clear
difference between the separability between most
of the semantic categories and the random cate-
gories. We found the gap surprisingly large.

Some of the semantic categories separated very
badly, which were analyzed to stem from differ-
ences in frequency for the different senses of the
word collocations. Our premise is that a good la-
tent word space should be able to separate differ-
ent cognitively constructed categories with only
a few active components, which is related to the
sparse coding generated by ICA. Further, we have
shown that we could find interpretable compo-
nents that matched semantic categories reason-
ably well using independent component analy-
sis. Compared to SVD, ICA finds a fixed rotation
where the components are also maximally inde-
pendent, and not only uncorrelated. This facili-
tates the analysis of the found structure explicitly,
without relying on implicit evaluation methods.
The interpretability of the ICA components is an
advantage over SVD, demonstrated by the quan-
titativestrict/lax evaluation.

The main motivation of this work is to support
the development towards automatic processes for
generating linguistic resources. In this paper,
we focus on independent component analysis to
generate the sparse linguistic representations, but
similar conclusions can be made with closely re-
lated methods, such as non-negative matrix fac-
torization (NMF).
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