
155

Proceedings of KONVENS 2012 (Main track: oral presentations), Vienna, September 20, 2012

S-restricted monotone alignments

Steffen Eger
Faculty of Economics

Goethe Universität Frankfurt
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Abstract

We present an alignment algorithm for
monotone many-to-many alignments,
which are relevant e.g. in the field of
grapheme-to-phoneme conversion (G2P).
Moreover, we specify the size of the
search space for monotone many-to-many
alignments in G2P, which indicates that ex-
haustive enumeration is generally possible,
so that some limitations of our approach
can easily be overcome. Finally, we present
a decoding scheme, within the monotone
many-to-many alignment paradigm, that
relates the decoding problem to restricted
integer compositions and that is, putatively,
superior to alternatives suggested in the
literature.

1 Introduction

Grapheme-to-phoneme conversion (G2P) is
the problem of transducing, or converting, a
grapheme, or letter, string x over an alphabet
Σx into a phoneme string y over an alphabet
Σy. An important first step thereby is finding
alignments between grapheme and phoneme
strings in training data. The classical alignment
paradigm has presupposed alignments that were

(i) one-to-one or one-to-zero; i.e. one grapheme
character is mapped to at most one phoneme
character; this assumption has probably been
a relic of both the traditional assumptions in
machine translation (Brown et al. 1990) and
in biological sequence alignment (Needle-
man and Wunsch, 1970). In the field of
G2P such alignment models are sometimes

also called ε-scattering models (Black et al.,
1998).

(ii) monotone, that is, the order between char-
acters in grapheme and phoneme strings is
preserved.

It is clear that, despite its benefits, the classical
alignment paradigm has a couple of limitations;
in particular, it may be unable to explain certain
grapheme-phoneme sequence pairs, a.o. those
where the length of the phoneme string is greater
than the length of the grapheme string such as in

exact igzækt

where x has length 5 and y has length 6. In the
same context, even if an input pair can be ex-
plained, the one-to-one or one-to-zero assumption
may lead to alignments that, linguistically, seem
nonsensical, such as

p h o e n i x
f – i: n i k s

where the reader may verify that, no matter where
the ε is inserted, some associations will always
appear unmotivated. Moreover, monotonicity ap-
pears in some cases violated as well, such as in
the following,

centre sent@r

where it seems, linguistically, that the letter char-
acter r corresponds to phonemic r and graphemic
word final e corresponds to @.
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Fortunately, better alignment models have been
suggested to overcome these problems. For ex-
ample, Jiampojamarn et al. (2007) and Jiampo-
jamarn and Kondrak (2010) suggest ‘many-to-
many’ alignment models that address issue (i)
above. Similar ideas were already present in
(Baldwin and Tanaka, 2000), (Galescu and Allen,
2001) and (Taylor, 2005). Bisani and Ney (2008)
likewise propose many-to-many alignment mod-
els; more precisely, their idea is to segment
grapheme-phoneme pairs into non-overlapping
parts (‘co-segmentation’), calling each segment a
graphone, as in the following example, consisting
of five graphones,

ph oe n i x
f i: n i ks

The purpose of the present paper is to intro-
duce a very simple, flexible and general mono-
tone many-to-many alignment algorithm (in Sec-
tion 3) that competes with the approach suggested
in Jiampojamarn et al. (2007). Thereby, our algo-
rithm is an intuitive and straightforward general-
ization of the classical Needleman-Wunsch algo-
rithm for (biological or linguistic) sequence align-
ment. Moreover, we explore simple and valuable
extensions of the presented framework, likewise
in Section 3, which may be useful e.g. to detect
latent classes in alignments, similar to what has
been done in e.g. Dreyer et al. (2008). We also
mention limitations of our procedure, in Section
4, and discuss the naive brute-force approach, ex-
haustive enumeration, as an alternative; further-
more, by specifying the search space for mono-
tone many-to-many alignments, we indicate that
exhaustive enumeration appears generally a fea-
sible option in G2P and related fields. Then, a
second contribution of this work is to suggest
an alternative decoding procedure when transduc-
ing strings x into strings y, within the monotone
many-to-many alignment paradigm (in Section
6.2). We thereby relate the decoding problem to
restricted integer compositions, a field in mathe-
matical combinatorics that has received increased
attention in the last few years (cf. (Heubach and
Mansour, 2004; Malandro, 2012)). Finally, we
demonstrate the superiority of our approach by
applying it to several data sets in Section 7.

It must be mentioned, generally, that we take
G2P only as an (important) sample application
of monotone many-to-many alignments, but that
they clearly apply to other fields of natural lan-
guage processing as well, such as translitera-
tion, morphology/lemmatization, etc. and we
thus also incorporate experiments on morphology
data. Moreover, as indicated, we do not ques-
tion the premise of monotonicity in the current
work, but take it as a crucial assumption of our
approach, leading to efficient algorithms. Still,
‘local non-monotonicities’ as exemplified above
can certainly be adequately addressed within our
framework, as should become clear from our il-
lustrations below (e.g. with higher-order ‘steps’).

2 S-restricted paths and alignments

Consider the two-dimensional lattice Z2. In
Z2, we call an ordered list of pairs (α0, β0) =
(0, 0), . . . , (αk, βk) = (m,n) a path from (0, 0)
to (m,n), and we call (ai, bi) := (αi, βi) −
(αi−1, βi−1), i = 1, . . . , k, steps. Moreover, we
call a path λ in the lattice Z2 from (0, 0) to (m,n)
monotone if all steps (a, b) are non-negative, i.e.
a ≥ 0, b ≥ 0, and we call the monotone path λ
S-restricted for a subset S of N2 if all steps lie
within S, i.e. (a, b) ∈ S.

Note that S-restricted monotone paths define
(restricted) co-segmentations, or (a special class
of) monotone alignments, between strings x and
y. For example, the two paths in Figure 1 corre-
spond to the two monotone alignments between
x = phoenix and y = fi:niks illustrated above.
Thus, we identify S-restricted monotone paths
with S-restricted monotone alignments in the se-
quel.

Moreover, note that the set and number of
S-restricted monotone paths allow simple recur-
sions. To illustrate, the number TS(m,n) of S-
restricted monotone paths from (0, 0) to (m,n)
satisifies

TS(m,n) =
∑

(a,b)∈S

TS(m− a, n− b), (1)

with initial condition TS(0, 0) = 1 and
TS(m,n) = 0 if m < 0 or n < 0. As will be
seen in the next section, under certain assump-
tions, optimal monotone alignments (or, equiva-
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Figure 1: Monotone paths in two-dimensional lattices corresponding to the monotone alignments between x =
phoenix and y = fi:niks given in Section 1. In the left lattice, we have arbitrarily (but suggestively) colored each
step in either red or blue.

lently, paths) can be found via a very similar re-
cursion.

3 Algorithm for S-restricted alignments

Let two strings x ∈ Σ∗x and y ∈ Σ∗y be given.
Moreover, assume that a set S of allowable steps
is specified together with a real-valued similarity
function sim : Σ∗x × Σ∗y → R between char-
acters of Σx and Σy. Finally, assume that the
score or value of an S-restricted monotone path
λ = (α0, β0), . . . , (αk, βk) is defined additively
linear in the similarity of the substrings of x and
y corresponding to the steps (a, b) taken, i.e.

score(λ) =
k∑
i=1

sim(xαiαi−1+1, y
βi
βi−1+1), (2)

where by xαiαi−1+1 we denote the subsequence
xαi−1+1 . . . xαi of x and analogously for y. Then
it is not difficult to see that the problem of finding
the path (alignment) with maximal score can be
solved efficiently using a very similar (dynamic
programming) recursion as in Eq. (1), which
we outline in Algorithm 1. Moreover, this al-
gorithm is obviously a straightforward general-
ization of the classical Needleman-Wunsch algo-
rithm, which specifies S as {(0, 1), (1, 0), (1, 1)}.

Note, too, that in Algorithm 1 we include two
additional quantities, not present in the original
sequence alignment approach, namely, firstly, the
‘quality’ q of a step (a, b), weighted by a fac-
tor γ ∈ R. This quantity may be of practical
importance in many situations. For example, if
we specify sim as log-probability (see below),
then Algorithm 1 has a ‘built-in’ tendency to sub-
stitute ‘smaller’, individually more likely steps
(a, b) by larger, less likely steps because in the

Algorithm 1 Gen. Needleman-Wunsch (GNW)
1: procedure GNW(x1 . . . xm, y1 . . . yn; S,

sim, q, L)
2: Mij ← 0 for all (i, j) ∈ Z2 such that
i < 0 or j < 0

3: M00 ← 1
4: for i = 0 . . .m do
5: for j = 0 . . . n do
6: if (i, j) 6= (0, 0) then
7: Mij ← max

(a,b)c∈S
{Mi−a,j−b +

sim(xii−a+1, y
j
j−b+1) + γq(a, b) +

χL
(
(xii−a+1, y

j
j−b+1), c

)
}

8: end if
9: end for

10: end for
11: return Mmn

12: end procedure

latter case fewer negative numbers are added; if
sim assigns strictly positive values, this relation-
ship is reversed. We can counteract these biases
by factoring in the per se quality of a given step.
Also note that if q is added linearly, as we have
specified, then the dynamic programming recur-
sion is not violated.

Secondly, we specify a function L :
(
Σ∗x ×

Σ∗y
)
× colors → R, where colors is a finite set of

‘colors’, that encodes the following idea. Assume
that each step (a, b) ∈ S appears in C, C ∈ N,
different ‘colors’, or states. Then, when taking
step (a, b) with color c ∈ colors (which we de-
note by the symbol (a, b)c in Algorithm 1), we
assess the ‘goodness’ of this decision by the ‘like-
lihood’ L that the current subsequences of x and
y selected by the step (a, b) ‘belong to’/‘are of’
color (or state) c. As will be seen below, this al-
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lows to very conveniently identify (or postulate)
‘latent classes’ for character subsequences, while
increasing the algorithm’s running time only by a
constant factor.

As to the similarity measure sim employed in
Algorithm 1, a popular choice is to specify it as
the (logarithm of the) joint probability of the pair
(u, v) ∈ Σ∗x×Σ∗y, but a multitude of alternatives is
conceivable here such as the χ2 similarity, point-
wise mutual information, etc. (see for instance the
overview in Hoang et al. (2009)). Also note that if
sim is e.g. defined as joint probability Pr(u, v) of
the string pair (u, v), then Pr(u, v) is usually ini-
tially unknown but can be iteratively estimated via
application of Algorithm 1 and count estimates in
an EM-like fashion (Dempster et al., 1977), see
Algorithm 2. As concerns q and L, we can like-
wise estimate them iteratively from data, spec-
ifying their abstract forms via any well-defined
(goodness) measures. The associated coefficients
γ and χ can be optimized on a development set or
set exogenously.

Algorithm 2 (Hard) EM Training
1: procedure EM({(xi,yi) | i = 1, . . . , N}; S,
T , ˆsim0, q̂0, L̂0)

2: t← 0
3: while t < T do
4: for i = 1 . . . N do
5: (xa

i ,y
a
i ) ←

GNW(xi,yi;S, ˆsimt, q̂t, L̂t)

6: end for
7: ˆsimt+1, q̂t+1, L̂t+1 ← f({xai ,yai | i =

1, . . . , N})
8: t← t+ 1
9: end while

10: end procedure

4 Exhaustive enumeration and
alignments

In the last section, we have specified a polyno-
mial time algorithm for solving the monotonic S-
restricted string alignment problem, under the fol-
lowing restriction; namely, we defined the score
of an alignment additively linear in the similari-
ties of the involved subsequences. This, however,
entails an independence assumption between suc-
cessive aligned substrings that oftentimes does

not seem justified in linguistic applications. If,
on the contrary, we specified the score, score(λ),
of an alignment λ between strings x and y as e.g.
k∑
i=1

log Pr
(
(xαiαi−1+1, y

βi
βi−1+1) | (x

αi−1

αi−2+1, y
βi−1

βi−2+1)
)

(using joint probability as similarity measure)
— this would correspond to a ‘bigram scoring
model’ — then Algorithm 1 would not apply.

To address this issue, we suggest exhaustive
enumeration as a possibly noteworthy alternative
— enumerate all S-restricted monotone align-
ments between strings x and y, score each of
them individually, taking the one with maximal
score. This brute-force approach is, despite its
simplicity, the most general approach conceiv-
able and works under all specifications of scoring
functions. Its practical applicability relies on the
sizes of the search spaces for S-restricted mono-
tone alignments and on the lengths of the strings
x and y involved.

We note the following here. By Eq. 1, for the
choice S = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1)},
a seemingly reasonable specification in the con-
text of G2P (see below), the number TS(n, n) of
S-restricted monotone alignments is given as (for
explicit formulae, cf. (Eger, 2012))

1, 1, 3, 7, 16, 39, 95, 233, 572, 1406, 3479, 8647

for n = 1, 2, . . . , 12 and e.g. TS(15, 15) =
134, 913. Moreover, for the distribution of let-
ter string and phoneme string lengths we esti-
mate Poisson distributions (Wimmer et al., 1994)
with parameters µ ∈ R as listed in Table 1 for
the German Celex (Baayen et al., 1996), French
Brulex (Content et al., 1990) and English Celex
datasets, as used in Section 7. As the table and the
above numbers show, there are on average only a
few hundred or few thousand possible monotone
many-to-many alignments between grapheme and
phoneme string pairs, for which exhaustive enu-
meration appears, thus, quite feasible; moreover,
given enough data, it usually does not harm much
to exclude a few string pairs, for which alignment
numbers are too large.

5 Choice of S

Choice of the set of steps S is a question of
model selection, cf. (Zucchini, 2000). Several ap-
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Dataset µG µP P[G>15] P[P>15]

German-Celex 9.98 8.67 4.80% 1.62%
French-Brulex 8.49 6.71 1.36% 0.15%
English-Celex 8.21 7.39 1.03% 0.40%

Table 1: Avg. grapheme and phoneme string lengths
in resp. data set, and probabilities that lengths exceed
15.

proaches are conceivable here. First, for a given
domain of application one might specify a possi-
bly ‘large’ set of steps Ω capturing a preferably
comprehensive class of alignment phenomena in
the domain. This may not be the best option be-
cause it may provide Algorithm 1 with too many
‘degrees of freedom’, allowing it to settle in un-
favorable local optima. A better, but potentially
very costly, alternative is to exhaustively enumer-
ate all possible subsets S of Ω, apply Algorithm
1 and/or Algorithm 2, and evaluate the quality of
the resulting alignments with any choice of suit-
able measures such as alignment entropy (Per-
vouchine et al., 2009), average log-likelihood,
Akaike’s information criterion (Akaike, 1974) or
the like. Another possibility would be to use a
comprehensive Ω, but to penalize unlikely steps,
which could be achieved by setting γ in Algo-
rithm 1 to a ‘large’ real number and then, in sub-
sequent runs, employ the remaining steps S ⊆ Ω;
we outline this approach in Section 7.

Sometimes, specific knowledge about a partic-
ular domain of application may be helpful, too.
For example, in the field of G2P, we would expect
most associations in alignments to be of the type
M -to-1, i.e. one or several graphemes encode a
single phoneme. This is because it seems reason-
able to assume that the number of phonetic units
used in language communities typically exceeds
the number of units in alphabetic writing systems
— 26 in the case of the Latin alphabet — so that
one or several letters must be employed to rep-
resent a single phoneme. There may be 1-to-N
or even M -to-N relationships but we would con-
sider these exceptions. In the current work, we
choose S = {(1, 1), (2, 1), (3, 1), (4, 1), (1, 2)}
for G2P data sets, and for the morphology data
sets we either adopt from (Eger, 2012) or use a
comprehensive Ω with ‘largest’ step (2, 2).

6 Decoding

6.1 Training a string transduction model

We first generate monotone many-to-many align-
ments between string pairs with one of the pro-
cedures outlined in Sections 3 and 4. Then,
we train a linear chain conditional random field
(CRF; see (Lafferty et al., 2001)) as a graphical
model for string transduction on the aligned data.
The choice of CRFs is arbitrary; any transduction
procedure tr would do, but we decide for CRFs
because they generally have good generalization
properties. In all cases, we use window sizes of
three or four to predict y string elements from x
string elements.

6.2 Segmentation

Our overall decoding procedure is as follows.
Given an input string x, we exhaustively gener-
ate all possible segmentations of x, feeding the
segmented strings to the CRF for transduction
and evaluate each individual resulting sequence of
‘graphones’ with an n-gram model learned on the
aligned data, taking the y string corresponding to
the graphone sequence with maximal probability
as the most likely transduced string for x. We il-
lustrate in Algorithm 3.

Algorithm 3 Decoding
1: procedure DECODE(x = x1 . . . xm; k∗, a, b,

tr)
2: Z ← ∅
3: for s ∈ C(m, k∗, a, b) do .
C(m, k∗, a, b) : the set of all integer composi-
tions of m with k∗ parts, each between a and b

4: ŷ← tr(s)
5: zŷ ← ngramScore(x, ŷ)
6: Z ← Z ∪ {zŷ}
7: end for
8: zŷ∗ ← maxzŷ Z
9: return ŷ∗

10: end procedure

As to the size of the search space that this pro-
cedure entails, note that any segmentation of a
string x of length n with k parts uniquely corre-
sponds to an integer composition (a way of writ-
ing n as a sum of non-negative integers) of the
integer n with k parts, as illustrated below,
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ph oe n i x
7 = 2 + 2 + 1 + 1 + 1

It is a simple exercise to show that there are(
n−1
k−1
)

integer compositions of n with k parts,
where by

(
n
k

)
we denote the respective binomial

coefficient. Furthermore, if we put restrictions
on the maximal size of parts — e.g. in G2P
a reasonable upper bound l on the size of parts
would probably be 4 — we have that there are(
k

n−k
)
l

integer compositions of n with k parts,

each between 1 and l, where by
(
k
n

)
l+1

we de-
note the respective l-nomial or polynomial coeffi-
cient (Comtet, 1974). To avoid having to enumer-
ate segmentations for all possible numbers k of
segment parts of a given input string x of length
n — these would range between 1 and n, entail-
ing
∑n

k=1

(
n−1
k−1
)

= 2n−1 possible segmentations
in total in the case without upper bound1 — we
additionally train a ‘number of parts’ prediction
model with which to estimate k; we call this in
short predictor model.

To illustrate the number of possible segmen-
tations with a concrete example, if x has length
n = 15, a rather large string size given the values
in Table 1, there are

2472, 2598, 1902, 990, 364, 91, 14, 1

possible segmentations of x with k =
8, 9, 10, 11, 12, 13, 14, 15 parts, each between 1
and 4.

7 Experiments

We conduct our experiments on three G2P data
sets, the German Celex (G-Celex) and French
Brulex data set (F-Brulex) taken from the Pas-
cal challenge (van den Bosch et al., 2006), and
the English Celex dataset (E-Celex). Further-
more, we apply our algorithms to the four Ger-
man morphology data sets discussed in Dreyer et
al. (2008), which we refer to, in accordance with
the named authors, as rP, 2PKE, 13SIA and 2PIE,
respectively. Both for the G2P and the morphol-
ogy data, we hold monotonicity, by and large, a

1In the case of upper bounds, Malandro (2012) provides
asymptotics for the number of restricted integer composi-
tions, which are beyond the scope of the present work, how-
ever.

2PKE. abbrechet, entgegentretet, zuziehet
z. abzubrechen, entgegenzutreten, zuzuziehen
rP. redet, reibt, treibt, verbindet
pA. geredet, gerieben, getrieben, verbunden

Table 2: String pairs in morphology data sets 2PKE
and rP (omitting 2PIE and 13SIA for space reasons)
discussed by (Dreyer et al., 2008). Changes from one
form to the other are in bold (information not given in
training). Adapted from Dreyer et al. (2008).

E-Celex {(1, 1), (2, 1), (3, 1), (4, 1), (1, 2)}
rP {(0, 2), (1, 1), (1, 2), (2, 1), (2, 2)}

2PKE {(0, 2), (1, 1), (2, 1), (2, 2)}
13SIA {(1, 1), (1, 2), (2, 1), (2, 2)}

2PIE {(1, 1), (1, 2)}

Table 3: Data set and choice of S. Note that for all
three G2P data sets, we select the same S, exemplarily
shown for E-Celex. The choice of S for rP and 2PKE
is taken from Eger (2012). For 13SIA and 2PIE we
use comprehensive Ω’s with largest step (2, 2) but the
algorithm ends up using just the outlined set of steps.

legitimate assumption so that our approach would
appear justified. As to the morphology data sets,
we illustrate in Table 2 a few string pair relation-
ships that they contain, as indicated by Dreyer et
al. (2008).

7.1 Alignments
We generate alignments for our data sets us-
ing Algorithms 1 and 2 and, as a comparison,
we implement an exhaustive search bigram scor-
ing model as indicated in Section 4 in an EM-
like fashion similar as in Algorithm 2, employ-
ing the CMU SLM toolkit (Clarkson and Rosen-
feld, 1997) with Witten-Bell smoothing as n-
gram model. For Algorithm 1, which we also
refer to as unigram model in the following, we
choose steps S as shown in Table 3. As similarity
measure sim, we use log prob with Good-Turing
smoothing and for q we likewise use log prob; we
outline the choice of L below. Initially, we set
γ and χ to zero. As an alignment quality mea-
sure we consider conditional entropy H(L |P )
(or H(P |L)) as suggested by Pervouchine et al.
(2009). Conditional entropy measures the aver-
age uncertainty of a (grapheme) substring L given
a (phoneme) substring P ; apparently, the smaller
H(L |P ) the better is the alignment because it
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Perplexity H(L |P )

2PKE-Uni 7.002± 0.04 0.094± 0.001
2PKE-Bi 6.865± 0.02 0.141± 0.003
rP-Uni 9.848± 0.09 0.092± 0.003
rP-Bi 9.796± 0.05 0.107± 0.006

Brulex-Uni 22.488± 0.35 0.706± 0.002
Brulex-Bi 22.215± 0.21 0.725± 0.003

Table 4: Conditional entropy vs. n-gram perplexity
(n = 2) of alignments for different data sets. In bold:
Statistically best results. K = 300 throughout.

produces more consistent associations.
In the following, all results are averages over

several runs, 5 in the case of the unigram model
and 2 in the case of the bigram model. Both for
the bigram model and the unigram model, we se-
lect K, where K ∈ {50, 100, 300, 500}, training
samples randomly in each EM iteration for align-
ment and from which to update probability esti-
mates.

In Figure 2, we show learning curves over
EM iterations in the case of the unigram and bi-
gram models, and over training set sizes. We see
that performance, as measured by conditional en-
tropy, increases over iterations both for the bi-
gram model and the unigram model (in Figure 2),
but apparently alignment quality decreases again
when too large training set sizesK are considered
in the case of the bigram model (omitted for space
reasons); similar outcomes have been observed
when similarity measures other than log prob are
employed in Algorithm 1 for the unigram model,
e.g. the χ2 similarity measure (Eger, 2012).
To explain this, we hypothesize that the bigram
model (and likewise for specific similarity mea-
sures) is more susceptible to overfitting when it
is trained on too large training sets so that it is
more reluctant to escape ‘non-optimal’ local min-
ima. We also see that, apparently, the unigram
model performs frequently better than the bigram
model.

The latter results may be partly misleading,
however. Conditional entropy, the way Pervou-
chine et al. (2009) have specified it, is a ‘uni-
gram’ assessment model itself and may therefore
be incapable of accounting for certain ‘contex-
tual’ phenomena. For example, in the 2PKE and

rP data, we find position dependent alignments of
the following type,

– g e b t g e – b t
ge g e b en g e ge b en

where we list the linguistically ‘correct’, due to
the prefixal character of ge in German, alignment
on the left and the ‘incorrect’ alignment on the
right. By its specification, Algorithm 1 must as-
sign both these alignments the same score and
can hence not distinguish between them; the same
holds true for the conditional entropy measure.
To address this issue, we evaluate alignments by
a second method as follows. From the aligned
data, we extract a random sample of size 1000
and train an n-gram graphone model (that can ac-
count for ‘positional associations’) on the resid-
ual, assessing its perplexity on the held-out set of
size 1000. Results are shown in Table 4. We see
that, in agreement with our visual impression at
least for the morphology data, the alignments pro-
duced by the bigram model seem to be slightly
more consistent in that they reduce perplexity of
the n-gram graphone model, whereas conditional
entropy proclaims the opposite ranking.

Figure 2: Learning curves over iterations for F-Brulex
data, K = 50 and K = 300, for unigram and bigram
models.

7.1.1 Quality q of steps
In Table 5 we report results when experiment-

ing with the coefficient γ of the quality of steps
measure q. Overall, we do not find that increas-
ing γ would generally lead to a performance in-
crease, as measured by e.g. H(L |P ). On the
contrary, when choosing as set of steps a compre-
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hensive Ω as in Table 5, where we choose Ω =
{(a, b) | a ≤ 4, b ≤ 4}\{(0, 0)}, for γ = 0, we
find values of 0.278, 0.546, 0.662 for H(L |P )
for G-Celex, F-Brulex and E-Celex, respectively,
while corresponding values for γ = 10 are 0.351,
0.833, 1.401. Contrarily, H(P |L), the putatively
more indicative measure for transduction from x
to y, has 0.499, 0.417, 0.598 for γ = 0 and 0.378,
0.401, 1.113 for γ = 10, so that, except for the E-
Celex data, γ = 10 apparently leads to improved
H(P |L) values in this situation, while γ = 0
seems to lead to better H(L |P ) values.

In any case, from a model complexity perspec-
tive,2 increasing γ may certainly be beneficial.
For example, Table 5 shows that with γ = 0, Al-
gorithm 1 will select up to 15 different steps for
the given choice Ω, most of which seem linguis-
tically questionable. On the contrary, with a large
γ, Algorithm 1 employs only four resp. five dif-
ferent steps for the G2P data; most importantly,
among these are (1, 1), (2, 1) and (3, 1), all of
which are in accordance with linguistic reasoning
as e.g. outlined in Section 5.

7.1.2 Colors
We shortly discuss here a possibility to detect

latent classes via the concept of colored paths.
Assume that a corpus of colored alignments is
available and let each color be represented by the
contexts (graphones to the left and right) of its
members; moreover, define the ‘likelihood’ L that
the pair px,y := (xαiαi−1+1, y

βi
βi−1+1) is of color c

as the (document) similarity (in an information
retrieval sense) of px,y’s contexts with color c,
which we can e.g. implement via the cosine simi-
larity of the context vectors associated with px,y
and c. For number of colors C = 2, we then
find, under this specification, the following kinds
of alignments when running Algorithms 1 and 2
with γ = 0 and χ = 1,

a nn u al
& n jU l
1 0 1 1

ph o n e me
f @U n i m
0 1 0 1 0

where we arbitrarily denote colors by 0 and 1,
and use original E-Celex notation for phonemic

2Taking into account model complexity is, for example,
in accordance with Occam’s razor or Akaike’s information
criterion.

characters. It is clear that the algorithm has de-
tected some kind of consonant/vowel distinction
on a phonemic level here. We find similar kinds of
latent classes for the other G2P data sets, and for
the morphology data, the algorithm learns (less
interestingly) to detect word endings and starts,
under this specification.

7.2 Transductions
We report results of experiments on transducing x
strings to y strings for the G2P data and the mor-
phology data sets. We exclude E-Celex because
training the CRF with our parametrizations (e.g.
all features in window size of four) did regularly
not terminate, due to the large size of the data set
(> 60,000 string pairs). Likewise for computing
resources reasons,3 we do not use ten-fold cross-
validation but, as in Jiampojamarn et al. (2008),
train on the first 9 folds given by the Pascal chal-
lenge, testing on the last. Moreover, for the G2P
data, we use an ε-scattering model with steps
S = {(1, 0), (1, 1)} as a predictor model from
which to infer the number of parts k∗ for decoding
and then apply Algorithm 3.4 For alignments, we
use in all cases Algorithms 1 and 2. As reference
for the G2P data, we give word accuracy rates as
announced by Bisani and Ney (2008), Jiampoja-
marn et al. (2007), and Rama et al. (2009), who
gives the Moses ‘baseline’ (Koehn et al., 2007).

For the morphology data we use exactly the
same training/test data splits as in Dreyer et al.
(2008). Moreover, because Dreyer et al. (2008)
report all results in terms of window sizes of 3,
we do likewise for this data. For decoding we do
not use a (complex) predictor model here but rely
on simple statistics; e.g. we find that for the class
13SIA, k∗ is always in {m−2,m−1,m}, where
m is the length of x, so we apply Algorithm 3
three times and select the best scoring ŷ string.
To avoid zeros in the decoding process (see dis-
cussion in Section 6.2), we replace the (0, 2) steps
used in the rP and 2PKE data sets by a step (1, 3).

Results are shown in Table 6. Note that, for the
G2P data, our approach always outperforms the

3E.g. a single run of the CRF on the G-Celex data takes
longer than 24 hours on a standard PC.

4We train the ε-scattering model on data where all multi-
character phonemes such as ks are merged to a single charac-
ter, as obtained from the alignments as given by Algorithms
1 and 2.
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(1, 1) (2, 1) (3, 1) (4, 1) (1, 2) (1, 0) (2, 3) (3, 2) (3, 3) (4, 2) (4, 3) (4, 4) (2, 2) (0, 1) (1, 3)

G-Celex 86.50 11.61 1.77 - 0.10 - - - - - - - - - -
86.14 8.17 1.63 0.02 0.00 2.56 0.10 0.04 0.01 0.09 0.91 0.28 - - -

F-Brulex 78.85 15.08 5.85 - - - 0.20 - - - - - - - -
75.64 13.80 2.52 0.36 0.07 5.07 0.29 0.10 0.02 0.38 1.01 0.68 - - -

E-Celex 88.87 6.58 3.05 - - - - - - - - - - 1.29 0.18
75.54 8.45 0.75 0.04 1.48 4.57 0.41 0.03 0.16 0.44 2.03 3.03 0.00 2.87 0.12

Table 5: Steps and their frequency masses in percent for different data sets for γ = 10 (top rows) and γ = 0
(bottom rows), averaged over two runs. We include only steps whose average occurrence exceeds 10.

best reported results for pipeline approaches (see
below), while we are significantly below the re-
sults reported by Dreyer et al. (2008) for the mor-
phology data in two out of four cases. On the con-
trary, when ‘pure’ alignments are taken into con-
sideration — note that Dreyer et al. (2008) learn
very complex latent classes with which to enrich
alignments — our results are considerably better
throughout. In almost all cases, we significantly
beat the Moses ‘baseline’.

8 Conclusion

We have presented a simple and general frame-
work for generating monotone many-to-many
alignments that competes with Jiampojamarn et
al. (2007)’s alignment procedure. Moreover, we
have discussed crucial independence assumptions
and, thus, limitations of this algorithm and shown
that exhaustive enumeration (among other meth-
ods) can overcome these problems — in particu-
lar, due to the relatively small search space — in
the field of monotone alignments. Additionally,
we have discussed problems of standard align-
ment quality measures such as conditional en-
tropy and have suggested an alternative decoding
procedure for string transduction that addresses
the limitations of the procedures suggested by Ji-
ampojamarn et al. (2007) and Jiampojamarn et al.
(2008).
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