Using Information Retrieval Technology for a Corpus Analysis Platform

Carsten Schnober
Institut fiir Deutsche Sprache
R5 6-13
D-68161 Mannheim
Germany
schnober@ids-mannheim.de

Abstract

This paper describes a practical approach to
use the information retrieval engine Lucene
for the corpus analysis platform KorAP,
currently being developed at the Institut
fiir Deutsche Sprache (IDS Mannheim). It
presents a method to use Lucene’s index-
ing technique and to exploit it for linguis-
tically annotated data, allowing full flexi-
bility to handle multiple annotation layers.
It uses multiple indexes and MapReduce
techniques in order to keep KorAP scalable.

1 Introduction

In this paper, the Lucene information retrieval
(IR) framework' is taken out of its native com-
pound, and ported to the field of corpus lin-
guistics, to investigate its applicability as an en-
gine for KorAP? (Korpusanalyseplattform der
ndchsten Generation, ‘“Next Generation Corpus
Analysis Platform”) that is conducted at the In-
stitut fiir Deutsche Sprache (IDS Mannheim).
The aim of this project is to develop a mod-
ern, state-of-the-art corpus-analysis platform, ca-
pable of handling very large corpora and opening
the perspectives for innovative linguistic research
(Banski et al., 2012).

The KorAP engine is designed to be scal-
able and flexible enough to store and analyse
the fast-growing amounts of linguistic resources
that have become available to corpus linguists.
The DeReKo corpus (Deutsches Referenzkorpus,

lemnehmnqmge:http://lucene.apache.org
2KorAP: http://korap.ids-mannheim.de

199

“German Reference Corpus”) serves as an im-
mediate use case, being the largest German text
corpus in the world with 5.4 billion words and
three concurrent annotation layers (IDS, 2011),
currently accessible through Cosmas II (Bodmer,
2005). The corpus is expected to keep growing
as rapidly as it has in the past two decades of its
existence in which DeReKo at least doubled its
size every five years®. Although the actual growth
cannot be extrapolated from such figures, KorAP
aims to be ready for corpora with 50 billion to-
kens. However, the KorAP platform is not de-
signed exclusively for DeReko but to process any
corpora, independent of size, writing system, lan-
guage or other specific characteristics.

1.1 Linguistic Research vs. Information
Retrieval

In IR, the primary goal is to find documents con-
taining the information the user needs. In text
documents, the surface text is the vehicle that pro-
vides and often hides this information, possibly
expressed in many different ways. From an IR
point of view, “language is an obstacle on the way
to resolving a problem” while in corpus linguis-
tics, the language is the research object (Perkuhn
etal., 2012, p. 19). A linguistic search may query
complex data structures and relationships, such
as multiple metrics and levels while the user de-
mands can pose challenging inquiries (e.g. rela-
tions, quantifiers, regular expressions (Banski et
al., 2012).

*DeReKo outlines (in German): http://www.
ids-mannheim.de/k1l/projekte/korpora/
archiv.html#Umfang

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

An ideal IR engine would thus be able to fully
interpret language and to abstract its meaning.
For that purpose, IR techniques typically aim to
remove elements that do not bear much mean-
ing, e.g. function words and morphological af-
fixes. Linguistic researchers, on the other hand,
are typically interested in finding linguistic phe-
nomena of all kinds, often involving tokens that
seem semantically less relevant.

1.2 Lucene

Lucene is an open-source framework for search-
ing large amounts of text and is considered to be
the most widely used information retrieval library
(McCandless et al., 2010, p. 3). It essentially pro-
vides a software library for creating inverted in-
dexes (Section 3).

The Lucene project also provides a ready-to-
run search application, Solr, that implements text
search with typical information retrieval function-
ality. However, Solr is neither designed for a lin-
guistic application like KorAP nor easily adapt-
able for that purpose.

1.3 KorAP Outlines

The KorAP project aims to build a generic solu-
tion to numerous problems that have arisen with
the increasing size of corpora that are subject to
linguistic research. An essential specification for
the KorAP engine is that it must comply with
scientific requirements and therefore, its results
must be falsifiable and traceable, making KorAP
a scientific tool while rendering insufficient sub-
stitutes like Google Search unnecessary; cf. Kil-
garriff (2007).

On the other hand, KorAP does not want
to re-invent the wheel and there are numerous
projects tackling similar problems, approaching
from both the linguistic and the computational
side. In that respect, one part of KorAP develop-
ment is to investigate existing solutions and find-
ing trade-offs between re-use and new develop-
ment. Other projects taken into account for (par-
tial) adaptation for KorAP include Annis (Zeldes
et al., 2009), DDC/DWDS* (Sokirko, 2003), and
Poliqarp (Janus and Przepiérkowski, 2007).

4Das Worterbuch der Deutschen Sprache (“The German
Language Dictionary”): http://retro.dwds.de/

200

Another central goal for KorAP is to reach
a level of generalisation that makes the plat-
form flexible enough to process any kind of
data, not only text but also multimodal re-
sources like recorded and transcribed speech; the
DGD speech corpora (Datenbank Gesprochenes
Deutsch, “German Speech Database”) (Fiehler
and Wagener, 2005) will serve as a use case.
Neither segmentations nor annotations are con-
strained by the KorAP engine and it should be
flexible enough to be prepared for annotation
types that might not even be thought of today.

That implies that KorAP does not predefine the
scale of a token; instead, any sequence of charac-
ters can be defined as the atomic building stones
to which other elements can refer. KorAP reads
token boundaries from external files and builds an
index based on these, but does not tokenize on its
own (see Section 3). Annotation tools can freely
assign tags or labels to character sequences with-
out being limited by a pre-defined tokenization al-
gorithm or another segmentation logic.

In order to allow adding annotations dynam-
ically at any point and independently of exist-
ing indexes, KorAP uses standoff annotations
(Thompson and McKelvie, 1997) to allow a clear
separation amongst annotations and between an-
notations and the primary text. This allows for
multi-level annotations of different types, includ-
ing discontinuous spans and structures with inter-
nal references like trees and dependency gram-
mars.

2 Previous Work

Lucene, as a fast and well-established text in-
dexing engine, has been applied for linguistic re-
search several times in the past years. Despite
the differences between IR and corpus linguistics,
there is a close relation. “The ability to interro-
gate large collections of parsed text [...] opens the
way to a new kind of information retrieval (IR)
that is sensitive to syntactic information, permit-
ting users to do more focussed search” (Ghodke
and Bird, 2010).

Lucene competes with relational and XML
database systems for solving the problem of ef-
ficiently querying linguistically annotated texts.
“Many existing systems load the entire corpus
into memory and check a user-supplied query

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

against every tree. Others avoid the memory lim-
itation, and use relational or XML database sys-
tems. Although these have built-in support for in-
dexes, they do not scale up either” (Ghodke and
Bird, 2010; Ghodke and Bird, 2008; Zhang et
al., 2001). However, there do exist approaches
in which relational database management systems
(RDBMS) are applied in large scale corpus index-
ing applications (Schneider, 2012).

The approach presented by Ghodke and Bird
(2010) is not directly transferable to KorAP be-
cause it does not focus on the same abstraction
level. While KorAP strictly uses standoff annota-
tions, Ghodke and Bird (2010) store annotations
inline, attached to the primary text. Also, they
create Lucene documents on the base of single
sentences, which makes it elegantly easy to search
for multiple words occurring in a single sentence
and reduces the search space radically, but at the
same time gives up information about how sen-
tences are related to each other.

Even though this approach is certainly useful
for many real-world use cases in corpus-driven
linguistic research, assuming the sentence to be a
naturally self-sufficient linguistic unit, this forms
a restriction that, once accepted, could not be
abandoned when more flexibility is needed. For
instance, a query might search for co-references
or repetitive utterances in subsequent sentences;
especially in discourse analysis, the sentence is
not always sufficient as highest research unit; cf.
Volk (2002) and Sinclair (2004).

3 Inverted Indexes

Inverted indexes (Brin and Page, 1998; Knuth,
1997, Chapter 6.5) are a technique to provide fast
querying for large text documents. A naive algo-
rithm would iterate over the full text to find occur-
rences of a search term; an inverted index reduces
the search space by creating a dictionary that lists
all the distinct terms contained in a collection of
documents and all the occurrences of each term:
“This is the inverse of the natural relationship, in
which documents list terms” (Lucene, 2012).

In order to create an inverted index, a precise
definition of a term has to be specified, corre-
sponding to a token without implying any further
(linguistic) meaning. Such tokens are the mini-
mum units to work with because an inverted index

201

provides direct access only to those terms that are
listed in its term dictionary.

Lucene stores the term dictionary in a file that
lists the distinct tokens in alphabetic order. Apart
from saving disk space, this allows using com-
mon prefixes to perform Wildcard searches, for
instance, efficiently. In order to make random ac-
cess to the dictionary fast, an additional term info
index file stores a copy of every n-th entry from
the term dictionary with a delta value that defines
“the difference between the position of this term’s
entry [...] and the position of the previous term’s
entry”. The term index is designed to reside en-
tirely in memory (Lucene, 2012).

A Lucene index can be segmented into multiple
parts; they are listed in a dedicated file in the in-
dex directory, but fully independent of each other.
A new segment is added during indexing when the
previous one’s size reaches a configurable thresh-
old. New segments can be added at any later
point, for instance when new documents are in-
dexed, and multiple segments can be merged.

4 Linguistic Research with Lucene

4.1 A Lucene Analyzer for KorAP Data

The Lucene indexing process happens in three
phases: read the text, analyse it, build an index.
The first step may simply be reading plain text
files, but can as well include text extraction from
various formats like XML files, PDFs or other
document types. In the second phase, the text is
split into tokens that form the key terms in the in-
verted index.

In IR, filters are typically applied in the text
analysis phase that aim to reduce the number of
distinct tokens, for instance by stopword filter-
ing and stemming. However, this is not oblig-
atory and the analysis process is fully customis-
able. Lucene provides various built-in analyzers,
but the choice can be broadened by own devel-
opments. After the text has been processed, the
index is finally built on the basis of the tokens
produced during analysis.

KorAP corpora are stored in XML files® where
each document comprises one directory, each

SSee http://korap.ids-mannheim.de/2012/
03/data-set-released/ for a sample KorAP XML
data set.

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

containing a file for the text (Figure 1) and one
for the metadata (Figure 2). The annotations are
organised in so-called foundries, realised as ded-
icated directories in which one or multiple anno-
tation levels congregate. “We define a foundry as
a collection of annotation layers that have some-
thing in common: they may have been simply
produced by the same tool, or at least they elab-
orate on the same theoretical view of the data
(in the case of foundries containing hierarchi-
cal annotation layers building upon one another)”
(Barski et al., 2011). KorAP provides two tok-
enization layers as part of the base foundry for ev-
ery document — one with a rather aggressive split-
ting approach (‘greedy’) and one that only inter-
prets white spaces as token boundaries (‘conser-
vative’). Apart from the tokenization layers, the
base foundry contains two layers that store sen-
tence and paragraph boundaries.

The KorAP implementation uses a Lucene an-
alyzer that takes as input the location of an XML
file instead of the actual primary text. That file
lists the spans or tokens (cf. Figure 3) and pro-
vides a pointer to the primary text; this is imple-
mented indirectly through the foundry metadata.
The KorAP analyzer thus parses three files — the
tokenization layer, the foundry metadata, and the
primary text file — and generates the tokens for in-
dexing. This method yields a Lucene index based
on the tokens defined in the tokenization layer file
without introducing any own tokenization logic
during the indexing.

<raw_text docid="WPD_AAA.00001">
<metadata file="metadata.xml"/>
<text>A bzw. [...]</text>
</raw_text>

a ist

<layer docid="WPD_AAA.00001">
<spanList>
<span from="64" to="67"
<span from="68" to="73"
</spanList>
</layer>

/>
/>

Figure 1: Extract from a file storing primary text.

<metadata docid="WPD_AAA.00001">
<doc file="text.xml" />
<foundry name="base"
path="base/" />
</metadata>

Figure 2: Extract from a document metadata file.

The first deviation from the standard Lucene
indexing process is that KorAP does not want
Lucene to perform the tokenization during index-
ing because it uses tokenizations produced ex-
ternally and independently of the indexing pro-
cess. One way to achieve this would be to re-
implement the tokenization algorithm(s) embed-
ded into a Lucene analyzer so that the Lucene
tokenizer exactly re-produces the results of the
external tokenizer. This would comply with the
Lucene-native solution, but not allow the engine
to work with a tokenization from which only the
results are known, without the algorithm that pro-
duced it, e.g. from a closed-source tool or up-
loaded by a user.

202

Figure 3: Extract from an annotation file seg-
menting the primary text.

4.2 Annotations

On an abstract level, the indexing engine inter-
prets all annotations in the same way: as charac-
ter spans to which values are assigned. From an
implementation point of view, an annotation ei-
ther only defines a span by character offsets or it
additionally provides a value to that span, e.g. a
part-of-speech tag. In the former case, the actual
character sequence is taken as the term to be in-
dexed, while in the latter case, the tag value is the
relevant information.

In the KorAP XML representation, a span has
an optional feature structure in an < f s>-element.
Figure 4 shows an annotation where different
values (lemma, certainty, and morpho-syntactical
tag) are assigned to a span. If a -element
contains no <fs>-element, it is a purely segment-
ing annotation (cf. Figure 3).

4.3 Concurrent Tokenizations

KorAP shifts the definition of a token away from
the engine and towards the tools and users that
provide tokenizations. It is designed to accept any
tokenization logic, leaving the judgement about
its meaning and usefulness entirely to the user.

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

<fs type="lex">
<f name="lex">
<fs>
<f name="lemma">A</f>
<f name="certainty">0.780715</£f>
<f name="ctag">NN</f>
</fs>
</f>
</fs>

Figure 4: A span annotated with a feature struc-
ture.

This flexibility resolves an issue that has appeared
whenever text analysis is based on tokens: dif-
ferent results in tokenization are the norm rather
than the exception (Chiarcos et al., 2009). While
providing two basic tokenizations, KorAP allows
for custom tokenizations as well, so that users can
opt to base their queries either on one of the built-
ins or on any other tokenization for their research.
The user always specifies a tokenization layer to
query, although the user interface can generally
set a default when she has not. Also, multiple to-
kenizations can be queried at the same time in one
search request.

4.4 Architecture and Implementation Details

4.4.1 Storing Higher-Level Information

As described before, an inverted index is al-
ways bound to some definition of tokens. In
Lucene, a token object has an optional Payload
field that holds an array of bytes. This is the place
where higher-level information can be stored, for
instance the sentence in which a specific token in-
stance has occurred; cf. Brin and Page (1998).
This is implemented by assigning IDs to such
above-token spans: when parsing the XML file
that holds sentence boundary information, the an-
alyzer derives an ID for each sentence that en-
codes a reference to the annotation layer, a pointer
to the primary text, and positional information.

In order to find, for instance, two or more to-
kens that occur in the same sentence, the search
engine matches their sentence IDs, stored in the
payloads. Because the IDs represent the posi-
tional order between sentences, the engine can as

203

well search for a word occurring in two subse-
quent sentences. This allows for more complex
queries, for instance to find two words that oc-
cur in the same verb phrase, but in different noun
phrases: the IDs for the verb phrase have to match
and the IDs for the noun phrase have to differ.

Inverted indexes are efficient only when query-
ing on the base of token strings. However, annota-
tions have to be searchable efficiently, too, which
is why they cannot just be stored as payloads
on tokens. This is where the previously men-
tioned abstraction of segmenting and labelling an-
notations comes into play: by applying the same
techniques as presented for tokens, further in-
dexes can be built using keys that are not (only)
based on the actual text character sequences, but
rather on the vocabulary applied by the annota-
tion tool or human annotator. For example, an
index can be introduced that uses part-of-speech
tags as keys and lists the occurrences for each tag.
This method can also be applied for constituen-
cies, lemmas etc.

Different indexes can be queried separately
and in parallel. Using the MapReduce paradigm
(Dean and Ghemawat, 2004), queries are com-
bined with queries on other indexes and merged
using the appropriate set operation (see Section
4.4.2). The efficiency and scalability of this ap-
proach depends mainly on the vocabulary, i.e. the
number of index keys, used in a given annotation,
and will be evaluated during further development.

4.4.2 Map and Reduce in Practice

KorAP aims to be scalable, which means in
practice that increasing corpus sizes must not lead
to a growth in computational cost to an extent that
could not compensated by increasing hardware
resources. In order to achieve this goal, KorAP
parallelizes as many operations as possible, ap-
plying the MapReduce paradigm: each query is
divided into independent sub-queries that can be
processed independently of each other and even-
tually, the results of these sub-queries are merged
to the final result. This allows for parallelization
and distribution of work load to many processors,
distributed across different machines, making the
platform scale up for very large corpora by adding
more machines to the system.

The Lucene index structure is well suited for

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

this strategy because any index can be split into
smaller segments that can be distributed across
different disks and machines. A central header
node divides incoming queries into atomic sub-
queries and distributes them to the machines in
the cluster that hold the actual indexes, the worker
nodes. Each worker node queries its index(es)
and sends back a set of results to the header node
where the result sub-sets are merged to the full
result set.

For instance, if the index of a full corpus is to
be distributed across five machines, five indexes
are created, each based on a different (possibly
overlapping) sub-set of the total document collec-
tion. When a simple term query comes in to the
head node, e.g. “find all occurrences of word ‘A,
the head node forwards that request to all five
worker nodes. Each of them searches its respec-
tive sub-index and returns a set of occurrences to
the head node. The head node joins the five result
sets in order to produce the final result.

For a more complex sample query like “find
word ‘A’ in sentences that also contain word ‘B,
the query is split into two queries “find word ‘A’
and “find word ‘B’ and these two queries are
sent to the worker nodes; this is the map step in
MapReduce terminology. After the worker nodes
have returned their results for both queries, each
of the sub-results for ‘A’ and ‘B’ are joined to two
sets. These sets are intersected — corresponding
to the Boolean AND-operator — so that only results
from the two sub-sets end up in the final result set
that share the same sentence ID; the reduce step
in MapReduce speak. Other Boolean operators —
OR and NOT - can be realised through the union
and difference set operations. Some queries could
limit the search to a sub-set of the full corpus (vir-
tual corpora, cf. Kupietz et al. (2010)) so that only
those partitions have to be addressed that hold the
relevant sub-corpora.

In the KorAP implementation, each query is
at first divided into the annotation layers that are
queried. In a second step, each of the single terms
is isolated. The latter forms the smallest unit of a
query and corresponds to a callable thread at run-
time. The reducing is performed in the inverse
order: the term results for a layer, returned by the
different threads, are joined according to the con-
junctions specified in the query (AND, OR, NOT).

204

Subsequently, the layer results are joined to form
the total result set.

In order to speed up actual query performance
upon intensive querying, index partitions can be
stored redundantly, so that similar queries can be
handled by different machines in parallel. This
allows scaling up the platform to an almost unre-
stricted extent: when requests that query a cer-
tain partial index turn out not to be answered
fast enough, another machine can be added to the
cluster that helps out at frequent tasks.

Another potential bottleneck is the head node,
although its main tasks — atomizing and distribut-
ing queries — are computationally less costly.
However, multiple head nodes can parallelize
these tasks as well when necessary.

5 Results

Benchmarking indexing and querying perfor-
mance of a platform like KorAP has to consider a
large number of factors, some of which are mutu-
ally dependent. Corpora of relevant size do not fit
on a single hard disk, so that the file system choice
matters as well as the distribution strategy, across
multiple hard disks and across a network. Also,
RAM capacity could lead to unexpected result be-
cause the system might not show significant speed
reductions with increasing data amounts as long
as it can hold the indexes in memory, but as soon
as the platform has to store intermediate results
on a hard disk, processing performance could de-
crease all of a sudden.

Performance comparisons between solid-state
disks (SSDs) and magnetic hard disks (HDDs)
could show surprising impacts as well because
the physical location and ordering of data on the
disk plays an important role. If data is dispersed
across the disk, an HDD reading head has to jump
across the platter while SSDs do not suffer speed
losses in that scenario. When reading a sequence
of bytes, the reading speed might not differ sig-
nificantly though.

In order to find comparable statistics that yield
insights about how the presented Lucene-based
implementation scales in relation to the data vol-
ume, indexes from corpora of different sizes were
created, all of them sub-samples of DeReKo (IDS,
2011). The number of documents in each test cor-
pus are reported in Table 1.

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

| #Documents | Index Size
1 29,704 | 1.6 GByte
2 196,854 16 GByte
3 512,542 | 33 GByte
4 974,722 | 42 GByte
5 1,487,264 | 75 GByte
6 2,080,111 | 76 GByte
7 3,597,079 | 151 GByte

Table 1: Sample corpora — sub-sets of the DeReKo
corpus — were used to test query performance (cf. Ta-
bles 2, 3, 4, 5). The reported sizes sum over three tok-
enization layers and one annotation layer contained in
the indexes.

We have applied two different tokenization
algorithms, a sentence splitter, and TreeTagger
(Schmid, 1994), including its own tokenizer, on
the full corpus. Our self-made tokenizers fol-
low different approaches in disputable cases such
as hyphenations within words; the ‘conservative’
method treats such items as one token, while
‘greedy’ splits instances like “Ski-WM?” into three
tokens. By default, ‘conservative’ has been used
in search.

The following queries were applied to all the
sample corpora:

1. Simple token search: ‘Alphabet’.

2. Concurrent tokenization: ‘Ski-WM’ in con-

servative tokenization and ‘Ski’ in greedy.

. Inter-layer search: ‘Buchstabe’ and ‘Alpha-
bet’ occurring in one sentence.

. Wildcard search: All tokens that start with
‘Alpha’ (‘Alpha*’).

. Part-of-speech (POS) search: ‘Alphabet’
tagged as noun (NN) (both tokenized and
tagged by TreeTagger).

. Inter-layer annotation search: Token ‘Alpha-
bet’ (conservative), tagged as Noun (NN) by
TreeTagger.

. High frequency: Tokens tagged as personal
pronoun (PPER) that start with ‘er’.

Tables 2, 3, 4, and 5 report the average re-
sponse times for the different queries executed

205

Query 1 Query 2
Sample | reponse | #hits | reponse | #hits
1 0.038s 10 | 0.021s 0
2 0.277s 996 | 0.198s 53
3 0.301s | 1,078 | 0.291s 136
4 0.135s 82 | 0.578s | 472
5 0.226s | 1,160 | 0.616s | 608
6 0.225s 380 | 0.418s | 262
7 0.400s | 1,550 | 0.803s | 870

Table 2: Queries 1 and 2 for all sample corpora (Ta-
ble 1), reporting response time and number of hits.

Query 3 Query 4
Sample | reponse | #hits | reponse | #hits
1 0.034s 0| 0.397s 837
2 0.057s 89 | 0.201s | 2,575
3 0.131s 89 | 0.351s | 3,308
4 0.031s 1| 0.175s | 1,167
5 0.102s 90 | 0.487s | 4,475
6 0.055s 8| 0.287s | 2,214
7 0.140s 98 | 0.828s | 7,526

Table 3: Queries 3 and 4 for all sample corpora (Ta-
ble 1), reporting response time and number of hits.

three times on each of the sample corpora listed
in Table 1, every time disregarding the first call
in order to allow caching to take effect. For each
match, the surrounding sentence was returned as
context; for two matches within one context sen-
tence, that sentence was counted as one hit only.
Therefore, the number of hits does not exactly
represent the number of matches; this is espe-
cially important because searches were aborted
after 1 million matches where necessary, yielding
different numbers of hits.

The indexes were stored on a Linux machine
with 48 CPU cores, 256 gigabytes of memory,
on an Ext4 file system in a storage area network
(SAN) on a RAID-5-volume. In order to retrieve
the context properly, the Lucene SpanQuery
class has been used in all cases. The present in-
dexing implementation has been based on Lucene
version 3.6.0.

Comparable index building times are not avail-
able here because they depend on factors like the
XML parser, file system performance, and net-
work load that lie beyond the scope of this pa-

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

Query 5 Query 6
Sample | reponse | #hits | reponse | #hits
1 0.015s 10 | 0.043s 9
2 0.066s 833 | 0.110s | 564
3 0.044s 915 | 0.158s | 624
4 0.018s 70 | 0.015s 52
5 0.055s 985 | 0.087s | 676
6 0.026s 374 | 0.039s | 279
7 0.068s | 1,369 | 0.098s | 964

Table 4: Queries 5 and 6 for all sample corpora (Ta-
ble 1), reporting response time and number of hits.

Query 7
Sample | reponse #hits
1 0.333s 8,489
2 4.234s | 186,969
3 9.032s | 421,229
4 10.721s | 522,118
5 20.362s | 910,038
6 19.543s | 892,494
7 19.544s | 894.905

Table 5: Query 7 for all sample corpora (Table 1), re-
porting response time and number of hits; search was
aborted after 1 million matches.

per. However, parsing the XML input files and
building indexes for the corpora reported in Table
1 took between 4 and 60 hours.

Anyway, indexing is not the most time-critical
part in the KorAP scenario: new DeReKo ver-
sions are released only twice a year. At those
points, they can be indexed in background while
users can still use the previous release. The
search, on the other hand, is expected to deliver
instant results whenever possible. There might be
compromises necessary in case of very complex
queries, but the querying side is where KorAP
places emphasis on performance. In short: the en-
gine has not been optimized to build indexes fast,
but to be queried fast.

The reported response times reveal one result
very cleary: the querying time depends on the
number of hits more than on the size of the cor-
pora or indexes. In a simple token query (Query
1), sample corpus 3 contains many more hits than
sample 4 which results in a threefold response
time, despite having only approximately half of

206

the size. Less obvious differences between the
corpora such as document sizes, vocabulary and
other factors probably play a role too, but the
number of hits seems to be most significant.

Not surprisingly, more complex queries take
longer to process, but reply times still increase
less than linearly in relation to corpus size. In-
tersections only increase response significantly
when there are very many hits either, as in Query
7 (Table 5). In order to avoid intersections with
large result sub-sets, one approach is a smarter
distribution of indexes, so that joins can be per-
formed at an early stage with smaller sets, before
the final reduce step is performed on the full set.
Another factor is query optimization so that com-
plex queries are rewritten in order to avoid inter-
sections and set differences whenever possible.

6 Summary & Outlook

We have used the Lucene engine to develop an
indexing module for the KorAP corpus analysis
platform. We have implemented a Lucene an-
alyzer class that handles pre-analysed texts and
corpora with multi-level stand-off annotations.
The platform shifts away the task of segment-
ing, tokenizing, and analysing corpora towards
the users and external tools and is ready to include
new annotations of different kinds. We have pre-
sented a way to apply inverted indexes within a
MapReduce-like environment, parallelizing tasks
and making the platform scalable and ready to
process very large corpora. Implicitly, this work
demonstrates that techniques and software from
the related field of IR can successfully be applied
for linguistic search tasks.

Acknowledgements

This work has been made possible by the Insti-
tut fiir Deutsche Sprache (IDS) in the context
of the KorAP project, funded by the Leibniz-
Gemeinschaft and is a direct result of the work
with the other KorAP core team members Piotr
Banski and Elena Frick. Further IDS colleagues
from within and outside the KorAP team have
contributed important theoretical advice and prac-
tical help: Cyril Belica, Peter Fankhauser, Marc
Kupietz, Roman Schneider, Oliver Schonefeld,
and the Cosmas-II-Team: Franck Bodmer, Peter
Harders, Helge Krause.

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

References

P. Barnski, C. Belica, H. Krause, M. Kupietz,
C. Schnober, O. Schonefeld, and A. Witt. 2011.
KorAP data model: first approximation, December.

P. Banski, Peter M. Fischer, E. Frick, E. Ketzan,
M. Kupietz, C. Schnober, O. Schonefeld, and
A. Witt. 2012. The new IDS corpus analysis plat-
form: Challenges and prospects. In Proceedings of
LREC-2012, Istanbul, May.

F. Bodmer. 2005. COSMAS II. Recherchieren in den
Korpora des IDS. Sprachreport, 21(3):2-5.

S. Brin and L. Page. 1998. The anatomy of a large-
scale hypertextual web search engine. Computer
networks and ISDN systems, 30(1-7):107-117.

C. Chiarcos, J. Ritz, and M. Stede. 2009. By all these
lovely tokens...: merging conflicting tokenizations.
In Proceedings of the Third Linguistic Annotation
Workshop, pages 35—43. Association for Computa-
tional Linguistics.

J. Dean and S. Ghemawat. 2004. MapReduce:
Simplified data processing on large clusters. In
OSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA,
December.

R. Fiehler and P. Wagener. 2005. Die Daten-
bank Gesprochenes Deutsch (DGD)-Sammlung,
Dokumentation, Archivierung und Untersuchung
gesprochener Sprache als Aufgaben der Sprachwis-
senschaft. Gesprdchsforschung-Online-Zeitschrift
zur verbalen Interaktion, 6:136-147.

S. Ghodke and S. Bird. 2008. Querying linguistic an-
notations. In Proceedings of the 13th Australasian
Document Computing Symposium, pages 69-72.

S. Ghodke and S. Bird. 2010. Fast query for large
treebanks. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 267-275. Association for Computa-
tional Linguistics.

IDS. 2011. Deutsches Referenzkorpus / Archiv der
Korpora geschriebener Gegenwartssprache 2011-11.

D. Janus and A. Przepidrkowski. 2007. Poligarp: An
open source corpus indexer and search engine with
syntactic extensions. In Proceedings of the 45th
Annual Meeting of the ACL on Interactive Poster
and Demonstration Sessions, pages 85-88. Associ-
ation for Computational Linguistics.

A. Kilgarriff. 2007. Googleology is bad science.
Computational Linguistics, 33(1):147151.

D.E. Knuth. 1997. The Art of Computer Program-
ming. Addison-Wesley, Reading, Massachusetts,
3rd edition.

207

M. Kupietz, C. Belica, H. Keibel, and A. Witt. 2010.
The German reference corpus DeReKo: a primor-
dial sample for linguistic research. In LREC 2010
Main Conference Proceedings. Malta.

Lucene, 2012. Apache Lucene — Index File Formats.
The Apache Software Foundation, April.

M. McCandless, E. Hatcher, and O. Gospodnetic.
2010. Lucene in Action. Manning Publications Co.,
2nd edition, July.

R. Perkuhn, H. Keibel, and M. Kupietz. 2012. Kor-
puslinguistik. Fink. (UTB 3433), Paderborn.

H. Schmid. 1994. Probabilistic part-of-speech tag-
ging using decision trees. In Proceedings of inter-
national conference on new methods in language
processing, volume 12, pages 44-49. Manchester,
UK.

R. Schneider. 2012. Evaluating DBMS-based access
strategies to very large multi-layer corpora. In Pro-
ceedings of the LREC 2012 Workshop: Challenges
in the management of large corpora. European Lan-
guage Resources Association (ELRA).

J. Sinclair, 2004. Trust the text, chapter 1. Routledge,
Milton Park, UK.

A. Sokirko, 2003. A technical overview of
DWDS/Dialing Concordance.

Henry S. Thompson and David McKelvie. 1997. Hy-
perlink semantics for standoff markup of read-only
documents. In Proceedings of SGML Europe.

M. Volk. 2002. Using the web as corpus for linguistic
research. Téhendusepiiiija. Catcher of the Mean-
ing. A Festschrift for Professor Haldur Oim.

A.Zeldes, J. Ritz, A. Liideling, and C. Chiarcos. 2009.
Annis: A search tool for multi-layer annotated cor-
pora. In Proceedings of Corpus Linguistics, pages
20-23.

C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and
G. Lohman. 2001. On supporting containment
queries in relational database management systems.
In Proceedings of the 2001 ACM SIGMOD inter-
national conference on Management of data, vol-
ume 30, pages 425-436. ACM.

Proceedings of KONVENS 2012 (Main track: poster presentations), Vienna, September 19, 2012

