
486

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

Standards for the Formal Representation of Linguistic Data: An
Exchange Format for Feature Structures

Rainer Osswald
SFB 991

Heinrich-Heine-Universität Düsseldorf
osswald@phil.hhu.de

Abstract
The International Standard ISO 24610 de-
fines a schema of how to encode feature
structures and their declarations in XML.
The main goal of this standard is to pro-
vide a format for the exchange of feature
structures and feature system declarations
between applications. This paper gives an
overview of the elements of the standard
and sketches its development and some of
the design decisions involved. We also dis-
cuss the role of this standard in relation
to other standardization proposals for lan-
guage resources and we briefly address its
relevance for application programming.

1 Feature structures

1.1 Feature structures in linguistics
In modern linguistics, the characterization of lin-
guistic entities as bundles of distinctive features
has been employed most prominently in phonol-
ogy.1 The phoneme /p/, for instance, can be seen
as the result of combining the phonetic features
voiceless, plosive, bilabial, etc. Phonetic features
occur usually in opposition pairs such as voiced
vs. voiceless and plosive vs. non-plosive. This di-
chotomy can be taken into account by introducing
binary features like VOICE, PLOSIVE, etc., with
possible values + and −. The phoneme /p/ is
then described by a set of feature-value pairs, for
which the following matrix notation is in use:VOICE −

PLOSIVE +

..
.

1Cf. Chomsky and Halle (1968).

CATEGORY noun
WORDFORM ‘Junge’

AGREEMENT

GENDER masculine
NUMBER singular
CASE nominative

Figure 1: Example of an untyped feature structure.

With the advent of unification-based grammars
in (computational) linguistics such as Generalized
Phrase Structure Grammar (GPSG) (Gazdar et al.,
1985) and Head-Driven Phrase Structure Gram-
mar (HPSG) (Pollard and Sag, 1994), more com-
plex, nested feature structures arose. Figure 1
shows a simple example of a nested feature struc-
ture, in which the non-atomic value of the fea-
ture AGREEMENT is again a feature structure. The
example describes part of the grammatical infor-
mation associated with the German noun ‘Junge’
(‘boy’). The feature structure is untyped in that
neither the main matrix nor the embedded ma-
trix carries any sortal information. In this respect,
this example differs from the typed feature struc-
ture shown in Figure 2, in which the main struc-
ture and every substructure carry a type (phrase,
word, etc.). The latter example also illustrates the
notion of structure sharing. The values of the
AGREEMENT feature are (token) identical, which
indicates that in a noun phrase, the agreement fea-
tures of the determiner and those of the head noun
must coincide.

The International Standard ISO 24610 provides
a schema for the representation of feature struc-
tures in XML. The main purpose of such a repre-
sentation is the standardized exchange of data be-

487

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

phrase
CATEGORY np

SPEC

word
CATEGORY determiner
WORDFORM ‘der’

AGREEMENT 1

agreement
GENDER masculine
NUMBER singular
CASE nominative

HEAD

word
CATEGORY noun
WORDFORM ‘Junge’
AGREEMENT 1

Figure 2: Example of a typed feature structure with
structure sharing.

tween different applications. In what follows, we
first give a formal definition of feature structures.
Section 2 is concerned with the rationale behind
the XML representation defined by the standard,
while Section 3 gives an overview of the elements
of the standard itself. In the concluding Section 4,
we will briefly discuss how this standard is re-
lated to other standardization proposals for lan-
guage resources and what role the standard can
play for application programming.

1.2 Formal definition of feature structures
In Part 2 of the International Standard ISO 24610,
feature structures are formally defined as follows.
The definition presumes a given finite set F of
features, a finite type hierarchy T with subtyping
relation < and a set X of “built-in” elements (see
below).2

Definition A feature structure over F , T and X
is a quadruple 〈Q, ρ, θ, δ〉, in which

– Q is a set of nodes,

– ρ is an element of Q, called the root,

– θ is a partial typing function from Q to T ,

– δ is a partial feature value function fromF×Q
to Q ∪ X ,

such that, for every node q 6= ρ, there exists a
sequence f1, . . . , fn of features and a sequence
q1, . . . , qn of nodes with q1 = ρ, qn = q and
qi+1 = δ(fi, qi) for i < n.

2A type hierarchy is a finite ordered set 〈T , <〉 such that
every two elements of T have a least upper bound in T . In
particular, every type hierarchy has a greatest element.

phrase

np

word

determiner

‘der’

agreement

masculine

singular

nominative

word

‘Junge’

noun

CATEGORY

SPEC

HEAD

CATEGORY

WORDFORM

AGREEMENT GENDER

NUMBER

CASEAGREEMENT

CATEGORY

WORDFORM

Figure 3: Labeled directed graph representation of the
feature structure of Figure 2.

The last condition of the definition basically
says that every node of a feature structure can be
reached from the root by a feature sequence, or
path. The given definition slightly generalizes the
definitions typically found in the literature (e.g.,
Carpenter (1992)) in that, first, the typing func-
tion is only partial and thus allows for untyped
feature structures and, second, the value of a fea-
ture can belong to a set X of elements defined
elsewhere. The members of X can be thought of
as built-ins such as binary values, string values,
symbolic values and numeric values.

The relation between the above definition of
feature structures and the feature-value matrices
shown before is fairly straightforward. Roughly
speaking, every opening square bracket and every
atomic feature value (which is not a built-in) cor-
responds to a node. The typing function is deter-
mined by the types attached to the matrix brackets
and by the atomic values (except, again, for built-
ins). The feature value function is defined in ac-
cordance with how the features in the matrix con-
nect one bracket to another or to an atomic value.3

3There has been some discussion in the literature (e.g.
Carpenter (1992), Pollard and Sag (1994)) about the ques-
tion as to whether feature-value matrices should better be
seen as descriptions of feature structures. This is not the
place to take up this discussion, but it seems that if this dis-

488

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

Figure 3 depicts the feature structure of Fig-
ure 2 as a labeled directed graph, where the la-
beled edges represent the feature value function
and the labels of the nodes represent the typ-
ing function. Note that the two string values are
treated as built-ins in this example.

2 XML representation of feature
structures

2.1 Data-oriented XML
The Extensible Markup Language (XML) is the
most popular format for exchanging structured
data and thus a natural candidate for providing
an interoperable representation format for feature
structures.4 Since XML documents have an as-
sociated tree model (and even provide means for
expressing co-reference), they seem to be fairly
closely related to feature structures.

There are, however, crucial differences be-
tween the two structures, which requires various
design decisions concerning the precise represen-
tation of feature structures by means of XML.
First, XML document trees consist of categori-
cally different types of nodes, namely element
nodes, attribute nodes, text nodes and some oth-
ers, of which only element nodes can have de-
scendants (keeping aside the case of ‘mixed con-
tent’).5 A second difference is that XML trees are
ordered trees (like any representation that is based
on serialization), in contrast to features structures.
The inherent ordering of XML provides an easy
way to encode list values (see Section 3.1) but,
on the other hand, gives rise to an identity prob-
lem since the order of the features matters for the
XML representations but not for represented fea-
ture structures. This issue could be resolved, if
necessary, by a canonical, say, alphabetic order-
ing of the features.

Another important aspect of an XML represen-
tation is that it is well-suited for declaring and

tinction is relevant at all then an XML-based interchange for-
mat is more on the description side of the divide.

4Some basic knowledge of XML is assumed in the fol-
lowing; cf. Ray (2003) for an introduction.

5An XML document is said to have mixed content if it al-
lows for elements which may contain character data that are
interspersed with child elements. This is typically the case
in text-oriented applications such as DocBook. Mixed con-
tent is generally regarded as inappropriate for data-oriented
formats like the ones discussed in this article.

checking its structure by available XML schema
languages and tools.

2.2 A rationale for feature structure
representation in XML

Many of the design decisions that led to the ISO
24610 standard can already be found in the TEI
Guidelines P3 dating back to the mid-1990’s, with
SGML instead of XML in use at that time. Lan-
gendoen and Simons (1995) give a concise expo-
sition of the decision process, which we briefly
summarize in the following. First, it is clear that
representing features by XML attributes is no op-
tion since attributes cannot have descendants and
thus would not allow to represent nested feature
structures. The following option is more promis-
ing: It seems fairly natural to represent features
by XML elements. The feature structure shown
in Figure 1 could then be represented in XML as
follows:

<fs>
<category>noun</category>
<wordform>Junge</wordform>
<agreement>
<fs>

<gender>masculine</gender>
<number>singular</number>
<case>nominative</case>

</fs>
</agreement>

</fs>

As Langendoen and Simons (1995) point out, the
main disadvantage of this representation is the un-
restricted proliferation of elements. As a conse-
quence, there would be no way to define a gen-
eral schema for feature structure representations
since the content model would depend fully on
application-specific elements. The proposed so-
lution is to employ a general-purpose element f
for features and to represent the names of the fea-
tures as attributes of these elements:

<fs>
<f name="category">noun</f>
<f name="wordform">Junge</f>
<f name="agreement">
<fs>

<f name="gender">masculine</f>
<f name="number">singular</f>
<f name="case">nominative</f>

</fs>
</f>

</fs>

489

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

The representation of the feature values poses a
second issue. The previous proposal does not dis-
tinguish between arbitrary strings such as ‘Junge’
and symbols such as noun and singular, which
belong to a given set of symbols. Moreover, the
content model for f would allow text content
as well as structured content. These problems
can be resolved by embedding the feature val-
ues in separate elements such as symbol and
string. String values are then encoded as text
content of string and type symbols are repre-
sented as values of the attribute value of the el-
ement symbol, in line with the general practice
to use text content in data-oriented XML for un-
restricted text only. The resulting XML represen-
tation of the above feature structure now looks as
follows:

<fs>
<f name="category">
<symbol value="noun"/>

</f>
<f name="wordform">
<string>Junge</string>

</f>
<f name="agreement">
<fs>

<f name="gender">
<symbol value="masculine"/>

</f>
<f name="number">
<symbol value="singular"/>

</f>
<f name="case">
<symbol value="nominative"/>

</f>
</fs>

</f>
</fs>

Note that the typing of feature structures is not
part of the above schema but could easily be im-
plemented by an appropriate attribute of the fs
element; cf. Section 3.1 below.

The structural schema of the feature structure
representation developed so far is summarized by
the following RELAX NG schema:6

6‘RELAX NG’ stands for ‘REgular LAnguage for XML,
New Generation’. The presentations given in this article use
the so-called compact syntax of RELAX NG. There is also
an XML-based syntax and there are tools to convert RE-
LAX NG schemas into other schema languages such as W3C
XML Schema. Cf. van der Vlist (2003) for an excellent in-
troduction to RELAX NG.

fs =
element fs {

element f {
attribute name { text },
(symbol | string | fs)

}*
}

symbol =
element symbol {

attribute name { text }
}

string = element string { text }

The proposed schema does not impose any con-
straints on the features or the values encoded by
a feature structure representation. It character-
izes the generic structure of feature structure rep-
resentations in XML. The schema does not even
exclude a feature name to occur more than once
in the f children of an fs element. That is, the
fundamental property of feature structures that
features are functional is not part of the well-
formedness of the representations licensed by the
above schema. There is also no way to cus-
tomize the schema in such a way that it would
capture more specific constraints about the feature
architecture and the type system. Grammar-based
schema languages like RELAX NG simply do not
support the formulation of conditions between at-
tributes of different elements.7

For this reason, Langendoen and Simons
(1995, p. 202) argue for devising a separate
markup format which is capable of representing
all kinds of constraints on the type system and
the feature architecture associated with a partic-
ular application domain. The resulting XML doc-
ument is called a feature system declaration. It
specifies, among others, which features are ad-
missible for a feature structure of a certain type
and which values are admissible for a given fea-
ture. A further kind of constraint that can be ex-
pressed by an FSD is the feature co-occurrence
restriction used with untyped feature structures.

3 The International Standard ISO 24610

The International Standard ISO 24610 grew out
of a joint initiative of the Text Encoding Initiative

7The rule-based schema language Schematron, by com-
parison, is able to assert such constraints since it has full
XPath support.

490

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

fs =
element fs {

attribute type { xsd:Name }?,
element f {

attribute name { text },
model.featureVal*

}*
}

model.featureVal.complex =
model.featureVal.complex |
model.featureVal.single

model.featureVal.complex =
fs | vColl | vNot | vMerge

model.featureVal.single =
binary | symbol | numeric |
string | vLabel | default | vAlt

vColl =
element vColl {

attribute org { "set" | "bag" |
"list" }?,

(fs | model.featureVal.single)*
}

vLabel =
element vLabel {

attribute name { data.word },
model.featureVal?

}

Figure 4: Slightly simplified excerpt of the ISO/TEI
XML schema for feature structure representations
(FSD).

(TEI) Consortium and the ISO Sub-Committee
TC 37/SC 4 (Language Resources Management);
cf. Lee et al. (2004). The goal was to develop
an international standard for the representation of
feature structures which can serve as an exchange
format between applications.

The standard consists of two parts. The first
part, ISO 24610-1 on features structure represen-
tation (FSR), was published 2006 while the sec-
ond part, ISO 24610-2 on features system decla-
ration (FSD), was published more than five years
later. Due to the fairly long time span between
the two publication dates and the strong interde-
pendency of the two parts, there are plans for re-
vising the ISO 24610-1 standard in order to make
it fully compliant with the more recent additions
of Part 2.

3.1 Feature structure representation (FSR)
The ISO standard builds on the schema motivated
in Section 2.2. Figure 4 shows a slightly sim-
plified excerpt of the XML schema listed as an
normative appendix of the second part of the ISO
24610 document. The main differences compared
to the schema developed above is an optional fs
attribute type, which allows for the representa-
tion of typed feature structures, and an extended
list of elements for representing feature values.

Structure sharing. Let us first consider the el-
ement vLabel. According to its specification
shown in Figure 4, it can serve as a kind of “value
wrapper”. Its purpose is to allow the representa-
tion of structure sharing, with its name attribute
acting as the co-reference label. For example, the
structure sharing between the two agreement sub-
structures of the feature structure shown in Fig-
ure 2 could be represented as follows:

<fs type="np">
...
<f name="spec">
<fs type="word">

<f name="agreement">
<vLabel name="L1">
<fs type="agreement">

...
</fs>

</vLabel>
</f>
...

</fs>
</f>
<f name="head">
<fs type="word">

<f name="agreement">
<vLabel name="L1"/>

</f>
...

</fs>
</f>

</fs>

Built-in value elements. In addition to the al-
ready mentioned built-in value elements symbol
and string, the ISO standard defines two fur-
ther elements: binary and numeric, which
have their obvious intended interpretation.

The vColl element allows the encoding of
lists, sets and bags (i.e., multisets) of atomic and
complex values. The corresponding schema in
Figure 4 shows that the members of the collec-
tion are represented as children of the vColl el-

491

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

ement, while the interpretation as a set, list, or
bag is simply indicated by the value of the at-
tribute org. Note that lists can be straightfor-
wardly represented this way because XML doc-
ument trees are ordered trees by definition. There
is of course no need to make use of the <vColl
org="list"> construct since lists can be rep-
resented directly as recursively nested feature
structures by means of the two features FIRST and
REST.8

The vNot and vAlt elements do not act as
constructors but characterize a single value. In
the case of vAlt, the value is specified as being
one of the values listed as children of the element;
in the case of vNot, the value is specified as be-
ing not the value given by the single child of that
element.

Symbolic values vs. types. An issue addressed
in Part 2 of the ISO 24510 document but not in the
TEI P5 Guidelines is the relation between sym-
bolic feature values and types. Starting with un-
typed feature structures, as we did in Section 2.2,
it seems quite natural to introduce an element like
symbol for encoding symbolic values. In the
presence of types, on the other hand, such ele-
ments are redundant at best. A symbolic value
can be treated as a type, which in turn can be iden-
tified with an atomic typed feature structure, that
is, a feature structure without any features. The
resulting difference in representation is illustrated
by the following two examples:

<fs type="word">
<f name="category">
<symbol value="noun"/>

</f>
...

<fs type="word">
<f name="category">
<fs type="noun"/>

</f>
...

The advantage of the second representation is that
symbolic values become on a par with types and
are hence part of the type hierarchy, which is not
the case with built-ins (cf. Section 1.2). We will
return to this issue below in Section 3.2.

8Cf. Witt et al. (2009) for an application of the FSR
schema that makes use of the latter option.

element fsdDecl { fsDecl+ }

fsDecl =
element fsDecl {

attribute type { xsd:Name },
attribute baseTypes {

list { xsd:Name+ }
}?,
fDecl+, fsConstraints?

}

fDecl =
element fDecl {

attribute name { xsd:Name },
vRange, vDefault?

}

fsConstraints =
element fsConstraints {

(cond | bicond)*
}

Figure 5: Simplified excerpt of the ISO/TEI XML
schema for feature system declarations.

Feature libraries and feature-value libraries.
The FSR standard provides means for defining li-
braries of feature-value combinations and of fea-
ture values, collected under the elements fLib
and fvLib, respectively. The idea is that refer-
encing the items of these collections by unique
identifiers may result in a more compact repre-
sentation of a feature structure. Notice that type
systems provide an alternative way of defining
complex feature-value combinations that can be
re-used at different places in other feature struc-
tures.

3.2 Feature system declaration (FSD)

Well-formedness vs. validity. As explained in
Section 2.2, well-formedness with respect to the
FSR schema is not concerned with any specific
constraints on the feature architecture or the type
system of the represented feature structure. The
solution proposed in the TEI Guidelines starting
with version P3 was to introduce a separate XML
format for specifying such declarations. This
idea and its current implementation in the TEI P5
Guidelines have been integrated into Part 2 of the
ISO 24610 standard.

Document structure. The overall document
structure of a feature system declaration (FSD) is

492

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

roughly described by the schema shown in Fig-
ure 5. A feature system declaration (fsdDecl)
consists of one or more feature structure declara-
tions (fsDecl). A feature structure declaration
specifies the type of the structure and, optionally,
one or more “base” types of which the type is a
sub-type. In addition, a feature structure declara-
tion consists of one or more feature declarations
(fDecl), which specify the name of the features,
the range of possible values and, optionally, a de-
fault value.

Feature structure and type declarations. The
following example sketches part of an FSD for the
typed feature structure shown in Figure 2. The
attribute baseTypes is used to declare that the
type word is a subtype of the type sign.

<fsDecl type="word" baseTypes="sign">
<fDecl name="category">

<vRange>
<vAlt>
<symbol value="determiner"/>
<symbol value="noun"/>
<symbol value="verb"/>
...

</vAlt>
</vRange>

</fDecl>
<fDecl name="wordform">

<vRange>
<string/>

</vRange>
</fDecl>
...

</fsDecl>

The example illustrates how to declare the range
of possible feature values by means of the
vRange construct. In fact, this is the only op-
tion if atomic values are represented by built-in
elements such as symbol. In order to represent
determiner, noun, verb etc. as members of the
type hierarchy, they have to be treated as atomic
feature structures along the following lines:

<fsDecl type="word" baseTypes="sign">
<fDecl name="category">
<vRange>

<fs type="category">
</vRange>

</fDecl>
...

</fsDecl>

<fsDecl type="determiner"
baseTypes="category"/>

<fsDecl type="noun"
baseTypes="category"/>

<fsDecl type="verb"
baseTypes="category"/>

...

Hence, the type hierarchy can be represented
by an FSD document by declaring types as atomic
feature structures together with the more general
types from which the type in question inherits.9

Feature structure constraints. One of the
goals of the ISO standard is to allow for both,
the feature structure declarations of typed fea-
ture structures in the style of HPSG (Pollard and
Sag, 1994) and the representation of feature co-
occurrence restrictions and defaults as employed
in GPSG (Gazdar et al., 1985) and other untyped
frameworks. While implicational constraints are
also relevant for typed frameworks (cf., e.g., the
principles of HPSG), they are fundamental to the
untyped case. We will not go into detail here be-
cause the representation of such constraints is ba-
sically a question of how to represent logical ex-
pressions in general (which in turn is the topic
of other initiatives such as RuleML). Examples
adapted from Gazdar et al. (1985) can be found in
Burnard and Bauman (2012, Sect. 18.11.4).

4 Discussion

Is FSR/FSD more than an exchange format?
The primary use case of the ISO 24610 standard
is the exchange of feature structure data between
applications. The question arises whether the
XML representation of feature structures com-
pliant with FSR is not only useful for exchang-
ing data but also as a data format for applica-
tion programming. In other words, can the XML
representation serve as the native data format
of an application? The appropriate answer is a
qualified yes. On the one hand, existing XML
technology (XML query languages, native XML
databases) provides a powerful environment for
working with FSR compliant data. On the other

9There is a caveat here. The schema for fsDecl in
ISO 24610-2 and TEI P5 apparently poses a problem for this
strategy since it requires at least one fDecl child. Hence,
strictly speaking, atomic feature structures cannot be de-
clared.

493

Proceedings of KONVENS 2012 (SFLR 2012 workshop), Vienna, September 21, 2012

hand, checking the validity of FSR data directly
on the basis of an FSD document is probably a
tedious task, for which logic programming of one
kind or another seems to be much better suited.

Is there a need for software tools? As an
application-oriented exchange format, the ISO
standard does not aim at human readability. The
question is, whether there is a need for viewing
and editing or even validity checking of FSR com-
pliant data. Given that an application system typ-
ically uses its own internal representation, which
is part of an elaborate editing and programming
environment, the answer could be negative. How-
ever, if the ISO standard is established as an ex-
port format, then a sufficiently powerful, freely
available (open source) tool for browsing, editing
and probably checking FSR/FSD data would be
extremely helpful for accessing the data. More-
over, the existence of such a tool could boost
the dissemination of the standard. Potential users
would need to transform their data into the ISO
format in order to use the tool.

The ISO 24610 standard in context. How
does the ISO 24610 standard relate to other stan-
dards for language resources developed by the
ISO Sub-Committee TC 37/SC 4? According to
the International Standard ISO 24612 ‘Linguis-
tic annotation framework’ (LAF), the FSR stan-
dard plays a key role for any sort of annotation.
LAF draws a clear-cut distinction between ref-
erential structure and annotation content struc-
ture and proposes that the latter be represented
as feature structures compliant with FSR. It fol-
lows that the ISO 24610 standard is tied in with
all standards related to linguistic content, be it
morphosyntax, syntactic, or pragmatic content.
Hence the standard contributes to the interoper-
ability of the ISO standards for language resource
management (Lee and Romary, 2010).

Acknowledgments

The writing of this paper has been supported
by the Collaborative Research Center 991 ‘The
Structure of Representations in Language, Cogni-
tion and Science’ funded by the German Research
Foundation (DFG).

References
Lou Burnard and Syd Bauman, editors. 2012.

TEI P5: Guidelines for Electronic Text Encod-
ing and Interchange (Version 2.1.0). Text Encod-
ing Initiative Consortium, Charlottesville, Virginia.
[http://www.tei-c.org/Guidelines/P5/].

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press, Cam-
bridge.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row, New York.

Gerald Gazdar, Ewan Klein, Geoffrey K. Pullum, and
Ivan Sag. 1985. Generalized Phrase Structure
Grammar. Blackwell, Oxford.

ISO 24610-1. Language resource management - Fea-
ture structures - Part 1: Feature structure represen-
tation. Publication date: 2006-04.

ISO 24610-2. Language resource management - Fea-
ture structures - Part 1: Feature system declaration.
Publication date: 2011-10.

ISO 24612. Language resource management - Lin-
guistic annotation framework (LAF). Publication
date: 2012-06.

D. Terence Langendoen and Gery F. Simons. 1995. A
rationale for the TEI recommendations for feature-
structure markup. Computers and the Humanities,
29:191–209.

Kiyong Lee and Laurent Romary. 2010. Towards
interoperability of ISO standards for language re-
source management. In Proceedings of the Second
International Conference on Global Interoperabil-
ity for Language Resources, pages 95–103, Hong
Kong. City University of Hong Kong.

Kiyong Lee, Lou Burnard, Laurent Romary, Eric de la
Clergerie Thierry Declerck, Syd Bauman, Harry
Bunt, Lionel Clément Tomaz Erjavec, Azim Rouss-
analy, and Claude Roux. 2004. Towards an interna-
tional standard on feature structures representation.
In Proceedings of LREC 2004, pages 373–376, Lis-
bon, Portugal. Universidade Nova de Lisboa.

Carl J. Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago.

Erik T. Ray. 2003. Learning XML. O’Reilly, Se-
bastopol, CA.

Eric van der Vlist. 2003. RELAX NG. O’Reilly, Se-
bastopol, CA.

Andreas Witt, Georg Rehm, Erhard Hinrichs, Timm
Lehmberg, and Jens Stegmann. 2009. SusTEIn-
ability of linguistic resources through feature
structures. Literary and Linguistic Computing,
24(3):363–372.

