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Abstract

In this paper, we show how unsupervised
sense representations can be used to im-
prove hypernymy extraction. We present
a method for extracting disambiguated hy-
pernymy relationships that propagate hy-
pernyms to sets of synonyms (synsets),
constructs embeddings for these sets, and
establishes sense-aware relationships be-
tween matching synsets. Evaluation on two
gold standard datasets for English and Rus-
sian shows that the method successfully
recognizes hypernymy relationships that
cannot be found with standard Hearst pat-
terns and Wiktionary datasets for the re-
spective languages.

1 Introduction

Hypernymy relationships are of central importance
in natural language processing. They can be used
to automatically construct taxonomies (Bordea et
al., 2016; Faralli et al., 2017; Faralli et al., 2018),
expand search engine queries (Gong et al., 2005),
improve semantic role labeling (Shi and Mihal-
cea, 2005), perform generalizations of entities men-
tioned in questions (Zhou et al., 2013), and so forth.
One of the important use cases of hypernyms is lex-
ical expansion as in the following sentence: “This
bar serves fresh jabuticaba juice”. Representa-
tion of the rare word “jabuticaba” can be noisy,
yet it can be substituted by its hypernym “fruit”,
which is frequent and has a related meaning. Note
that, in this case, subword information provided
by character-based distributional models, such as
fastText (Bojanowski et al., 2017), does not help to
derive the meaning of the rare word.

Currently available hypernymy extraction meth-
ods perform extraction of hypernymy relationships
from text between two ambiguous words, e.g.,

apple � fruit. However, by definition in Cruse
(1986), hypernymy is a binary relationship between
senses, e.g., apple2 � fruit1, where apple2 is the
“food” sense of the word “apple”. In turn, the word
“apple” can be represented by multiple lexical units,
e.g., “apple” or “pomiculture”. This sense is dis-
tinct from the “company” sense of the word “ap-
ple”, which can be denoted as apple3. Thus, more
generally, hypernymy is a relation defined on two
sets of disambiguated words; this modeling princi-
ple was also implemented in WordNet (Fellbaum,
1998), where hypernymy relations link not words
directly, but instead synsets. This essential prop-
erty of hypernymy is however not used or modeled
in the majority of current hypernymy extraction
approaches. In this paper, we present an approach
that addresses this shortcoming.

The contribution of our work is a novel approach
that, given a database of noisy ambiguous hyper-
nyms, (1) removes incorrect hypernyms and adds
missing ones, and (2) disambiguates related words.
Our unsupervised method relies on synsets induced
automatically from synonymy dictionaries. In con-
trast to prior approaches, such as the one by Pen-
nacchiotti and Pantel (2006), our method not only
disambiguates the hypernyms but also extracts new
relationships, substantially improving F-score over
the original extraction in the input collection of
hypernyms. We are the first to use sense representa-
tions to improve hypernymy extraction, as opposed
to prior art.

2 Related Work

In her pioneering work, Hearst (1992) proposed to
extract hypernyms based on lexical-syntactic pat-
terns from text. Snow et al. (2004) learned such
patterns automatically, based on a set of hyponym-
hypernym pairs. Pantel and Pennacchiotti (2006)
presented another approach for weakly supervised
extraction of similar extraction patterns. All of
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Figure 1: Outline of the proposed method for sense-aware hypernymy extraction using synsets.

these approaches use a small set of training hy-
pernymy pairs to bootstrap the pattern discovery
process. Tjong Kim Sang (2007) used Web snip-
pets as a corpus for a similar approach. More recent
approaches exploring the use of distributional word
representations for extraction of hypernyms and
co-hyponyms include (Roller et al., 2014; Weeds
et al., 2014; Necsulescu et al., 2015; Vylomova et
al., 2016). They rely on two distributional vectors
to characterize a relationship between two words,
e.g., on the basis of the difference of such vectors
or their concatenation.

Recent approaches to hypernym extraction went
into three directions: (1) unsupervised methods
based on such huge corpora as CommonCrawl1

to ensure extraction coverage using Hearst (1992)
patterns (Seitner et al., 2016); (2) learning pat-
terns in a supervised way based on a combina-
tion of syntactic patterns and distributional features
in the HypeNet model (Shwartz et al., 2016); (3)
transforming (Ustalov et al., 2017a) or specializ-
ing (Glavaš and Ponzetto, 2017) word embedding
models to ensure the property of asymmetry. We
tested our method based on a large-scale database
of hypernyms extracted in an unsupervised way
using Hearst patterns. While methods, such as
those by Mirkin et al. (2006), Shwartz et al. (2016),
Ustalov et al. (2017a) and Glavaš and Ponzetto
(2017) use distributional features for extraction of
hypernyms, they do not take into account word
sense representations: this is despite hypernymy
being a semantic relation holding between senses.

The only sense-aware approach we are aware of
is presented by Pennacchiotti and Pantel (2006).
Given a set of extracted binary semantic relation-
ships, this approach disambiguates them with re-

1https://commoncrawl.org

spect to the WordNet sense inventory (Fellbaum,
1998). In contrast to our work, the authors do not
use the synsets to improve the coverage of the ex-
tracted relationships.

Note that we propose an approach for post-
processing of hypernyms based on a model of distri-
butional semantics. Therefore, it can be applied to
any collection of hypernyms, e.g., extracted using
Hearst patterns, HypeNet, etc. Since our approach
outputs dense vector representations for synsets, it
could be useful for addressing such tasks as knowl-
edge base completion (Bordes et al., 2011).

3 Using Synsets for Sense-Aware
Hypernymy Extraction

We use the sets of synonyms (synsets) ex-
pressed in such electronic lexical databases as
WordNet (Fellbaum, 1998) to disambiguate the
words in extracted hyponym-hypernym pairs. We
also use synsets to propagate the hypernymy rela-
tionships to the relevant words not covered during
hypernymy extraction.

Our unsupervised method, shown in Figure 1,
relies on the assumption that the words in a synset
have similar hypernyms (Section 3.1). We exploit
this assumption to gather all the possible hyper-
nyms for a synset and rank them according to their
importance (Section 3.2). Then, we disambiguate
the hypernyms, i.e., for each hypernym, we find
the sense which synset maximizes the similarity to
the set of gathered hypernyms (Section 3.3).

Additionally, we use distributional word repre-
sentations to transform the sparse synset representa-
tions into dense synset representations. We obtain
such representations by aggregating the word em-
beddings corresponding to the elements of synsets
and sets of hypernyms (Section 3.4). Finally, we
generate the sense-aware hyponym-hypernym pairs
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Algorithm 1 Unsupervised Sense-Aware Hypernymy Extraction.
Input: a vocabulary V , a set of word senses V , a set of synsets S , a set of is-a pairs R ⊂V 2.

a number of top-scored hypernyms n ∈ N,
a number of nearest neighbors k ∈ N,
a maximum matched synset size m ∈ N.

Output: a set of sense-aware is-a pairs R⊂ V2.
1: for all S ∈ S do
2: label(S)← {h ∈V : (w,h) ∈ R,w ∈ words(S)}
3: for all S ∈ S do
4: for all h ∈ label(S) do
5: tf–idf(h,S,S)← tf(h,S)× idf(h,S)
6: for all S ∈ S do // Hypernym Sense Disambiguation
7: �label(S)← /0
8: for all h ∈ label(S) do // Take only top-n elements of label(S)
9: Ŝ ← argmaxS�∈S:senses(h)∩S� �= /0 sim(label(S),words(S�))

10: ĥ ← senses(h)∩ Ŝ
11: �label(S)← �label(S)∪{ĥ}
12: for all S ∈ S do // Embedding Synsets and Hypernyms
13: �S ← ∑w∈words(S) �w

|S|

14:
−−→
label(S)← ∑h∈label(S) tf–idf(h,S,S)·�h

∑h∈label(S) tf–idf(h,S,S)

15: Ŝ ← argmaxS�∈NNk(
−−→
label(S))∩S\{S} sim(

−−→
label(S),�S�)

16: if |Ŝ|≤ m then
17: �label(S)← �label(S)∪ Ŝ
18: return

�
S∈S S× �label(S)

fruit1

apple2 mango3 jabuticaba1

Figure 2: Disambiguated hypernymy relationships:
each hypernym has a sense identifier from the pre-
defined sense inventory.

by computing cross products (Section 3.5).
Let V be a vocabulary of ambiguous words, i.e.,

a set of all lexical units (words) in a language. Let
V be a set of all the senses for the words in V . For
instance, apple2 ∈ V is a sense of apple ∈ V . For
simplicity, we denote senses(w)⊆ V as the set of
sense identifiers for each word w ∈ V . Then, we
define a synset S ∈ S as a subset of V .

Given a vocabulary V , we denote the input set of
is-a relationships as R ⊂V 2. This set is provided
in the form of tuples (w,h) ∈ R. Given the nature
of our data, we treat the terms hyponym w ∈ V
and hypernym h ∈V in the lexicographical mean-

ing. These lexical units have no sense labels at-
tached, e.g., R = {(cherry,color),(cherry, fruit)}.
Thus, given a set of synsets S and a relation R⊂V 2,
our goal is to construct an asymmetrical relation
R⊂ V2 that represents meaningful hypernymy re-
lationships between word senses.

The complete pseudocode for the proposed ap-
proach is presented in Algorithm 1; the output of
the algorithm is the sense-aware hypernymy re-
lation R (cf. Figure 2). The following sections
describe various specific aspects of the approach.

3.1 Obtaining Synsets

A synset is a linguistic structure which is composed
of a set of mutual synonyms, all representing the
same word sense. For instance, WordNet described
two following senses of the word “mango”, which
correspond to a tree and a fruit respectively, as
illustrated in Figure 3. Note that, depending on the
word sense, the word “mango” can have a different
hypernym, which is also a synset in turn.

In our experiments, presented in this paper, we
rely on synsets from the manually constructed lexi-
cal resources, such as WordNet (Fellbaum, 1998),
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mango

mango

direct hypernym

Figure 3: Synsets of the word “mango” from the Princeton WordNet and their respective hypernyms.

and on synsets constructed automatically from
synonymy dictionaries, using the WATSET algo-
rithm (Ustalov et al., 2017b).

While synonymy dictionaries can be extracted
from Wiktionary and similar resources for almost
any language, coverage of such dictionaries, for
some languages can be still scarce. For these
cases, instead of synsets, our approach can be used
with distributionally induced word senses extracted
from unlabelled text corpora. We explored this
route in (Panchenko et al., 2018).

3.2 Finding Informative Synset Hypernyms
We start with finding informative hypernyms for
every synset. In real-world datasets, the input rela-
tion R can contain noise in the form of mistakenly
retrieved co-occurrences and various human errors.
In order to get rid of these mistakes, we map ev-
ery synset S ∈ S to a bag of words label(S) ⊂ V
without sense identifiers. This synset label holds a
bag of hypernyms in R matching the words in S as
hyponyms in lines 1–2:

label(S)= {h∈V : (w,h)∈R,w∈words(S)}. (1)

In case the relation R is provided with the counts
of pair occurrences in a corpus, we add each occur-
rence into label(S). Furthermore, since label(S) is
a bag allowing multiple occurrences of the same hy-
pernyms for different words included to the synset,
we model the variable importance of words in la-
bels using the tf–idf weighing scheme (Salton and
Buckley, 1988) in lines 3–5:

tf–idf(h,S,S) = tf(h,S)× idf(h,S), (2)

tf(h,S) =
|h� ∈ label(S) : h = h�|

| label(S)| , (3)

idf(h,S) = log
|S|

|S� ∈ S : h ∈ label(S�)| . (4)

In order to ensure that the most important hy-
pernyms are the terms that often were identified as
hypernyms for the respective synset, we limit the
maximal size of label(S) to a parameter n ∈ N. As
the result of this step, each synset is provided with
a set of top-n hypernyms the importance of which
is measured using tf–idf.

3.3 Hypernym Sense Disambiguation
The words in the synset labels are not yet provided
with sense labels, so in this step, we run a word
sense disambiguation procedure that is similar to
the one by Faralli et al. (2016). In particular, given
a synset S ∈ S and its label(S) ⊆ V , for each hy-
pernym h ∈ label(S) we aim at finding the synset
S� ∈ S such that it is similar to the whole label(S)
containing this hypernym while it is not equal to S.

We perform the hypernym sense disambiguation
as follows. Every synset and every label are rep-
resented as sparse vectors in a vector space model
that enables computing distances between the vec-
tors (Salton et al., 1975). Given a synset S ∈ S and
its label, for each hypernym h ∈ label(S) we iterate
over all the synsets that include h as a word. We
maximize the cosine similarity measure between
label(S) and the candidate synset S� ∈ S to find the
synset Ŝ the meaning of which is the most similar to
label(S). The following procedure is used (line 9):

Ŝ = argmax
S�∈S:senses(h)∩S� �= /0

sim(label(S),words(S�)). (5)

Having obtained the synset Ŝ that is closest to
label(S), we treat ĥ = senses(h)∩ Ŝ as the desired
disambiguated sense of the hypernym h ∈ label(S).
This procedure is executed for every word in the
label to produce a disambiguated label (lines 10–
11):

�label(S) = {ĥ ∈ V : h ∈ label(S)} (6)
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The result of the label construction step is
the set of disambiguated hypernyms linked to
each synset. For example, consider the hy-
pernymy label {fruit, food,cherry} and two fol-
lowing synsets: {cherry1,red fruit1, fruit1} and
{cherry2,cerise1,cherry red1}. The disambigua-
tion procedure will choose the first sense of the
word “fruit” in the hypernymy label because the
latter synset is more similar to the given label.

3.4 Embedding Synsets and Hypernyms

In order to overcome data sparsity by retrieving
more relevant senses, we use such distributional
word representations as Skip-gram (Mikolov et al.,
2013). We embed synsets and their labels in a
low-dimensional vector space to perform matching.
This matching makes it possible to produce more
sense-aware hypernymy pairs as it captures the
hierarchical relationships between synsets through
their labels. Given a word w ∈ V , we denote as
�w ∈ Rd a d-dimensional vector representation of
this word.

Given the empirical evidence of the fact that a
simple averaging of word embeddings yields a rea-
sonable vector representation (Socher et al., 2013),
we follow the SenseGram approach by Pelevina et
al. (2016) to compute synset embeddings. We per-
form unweighted pooling as the words constituting
synsets are equally important (line 13):

�S =
∑w∈words(S)�w

|S| . (7)

In contrast to the approach we use to embed
synsets, we perform weighted pooling of the word
embeddings to compute the label embeddings.
Like the weights, we use tf–idf scores produced
at the synset labeling stage (Section 3.2). Thus,
each label(S) is mapped to the following low-
dimensional vector (line 14):

−−→
label(S) =

∑h∈label(S) tf–idf(h,S,S) ·�h
∑h∈label(S) tf–idf(h,S,S) . (8)

Now, we use a top-down procedure for establish-
ing relationships between the synsets as follows.
We represent all the synsets S and all their labels in
the same vector space. Then, for each synset label,
we search for the k ∈ N nearest neighbors of the
label vector. In case we find a synset among the top
neighbors, we treat it as the set of hypernyms of the
given synset. Specifically, given a synset S ∈ S and

its
−−→
label(S) ∈ Rd , we extract a set of nearest neigh-

bors NNk(
−−→
label(S)). Each element of the result set

can be either a synset or a label. We do not take
into account the neighbors that are labels. We also
exclude the input synset from the result set. Thus,
for the synset Ŝ we use a disambiguation procedure
shown in line 15:

Ŝ = argmaxsim
S�∈NNk(

−−→
label(S))∩S\{S}

(
−−→
label(S),�S�). (9)

Additionally, we require that no candidate synset
includes more than m ∈ N words as it can hardly
represent a reasonable set of synonyms. Finally,
to each S ∈ S we assign �label(S) = �label(S)∪ Ŝ in
lines 16–17. In case no synsets are found, we skip
S. During prototyping, we tried the bottom-up pro-
cedure of searching a label given a synset. Our
experiments showed that such a procedure is ineffi-
cient and fails to provide a reasonable matching.

3.5 Generation of Hypernymy Pairs
We generate an output set of sense-aware hyponym-
hypernym pairs R⊂ V2 by computing a cross prod-
uct between the set of synsets and the set the labels
corresponding to them (line 18):

R=
�

S∈S
S× �label(S). (10)

As the result, the example in Figure 2 will
be transformed into the following relation R:

Hyponym Sense Hypernym Sense

apple2 fruit1

mango3 fruit1

jabuticaba1 fruit1

4 Evaluation

We conduct two experiments based on well-known
gold standards to address the following research
questions:

RQ1 How well does the proposed approach gener-
alize the hypernyms given the synsets of the
gold standard?

RQ2 How well does the proposed approach gen-
eralize the hypernyms given the synsets not
belonging to the gold standard?

We run our experiments on two different lan-
guages, namely English, for which a large amount
of lexical semantic resources are available, and Rus-
sian, which is an under-resourced natural language.
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Table 1: Hypernyms used to construct labels of the input synsets, the frequency threshold for Hearst
Patterns is denoted as f ∈ N.

Language Name # pairs
E

ng
lis

h Wiktionary 62866
Hearst Patterns ( f ≥ 100) 39650
ALL (Wiktionary + Hearst Patterns) 102516

R
us

si
an

Wiktionary 185257
Hearst Patterns ( f ≥ 30) 10458
Small Academic Dictionary 38661
ALL (Wiktionary + Small Academic Dictionary + Hearst Patterns) 234376

We report the performance of two configurations
of our approach. The first configuration, Sparse,
excludes the embedding approach described in Sec-
tion 3.4 (lines 13–17). The second configuration,
Full, is a complete setup of our approach, which in-
cludes the relation extracted with the Sparse config-
uration and further extends them with relations ex-
tracted using synset-hypernym embedding match-
ing mechanism.

4.1 Experimental Setup

Given a gold standard taxonomy, composed of hy-
pernymy relations, one can evaluate the quality of
the automatically extracted hypernyms by compar-
ing them to this resource. A common evaluation
measure for assessing taxonomies is the cumulative
Fowlkes–Mallows index proposed by Velardi et al.
(2013). However, this measure cannot be applied
for relatively large graphs like ours due to running a
depth-first search (DFS) algorithm to split the input
directed graph into levels. Since our graphs have
hundreds of thousands of nodes (cf. Table 1), this
approach is not tractable in reasonable time unlike
in the evaluation by Bordea et al. (2016) that was
applied to much smaller graphs. To make our eval-
uation possible, we perform directed path existence
checks in the graphs instead of the DFS algorithm
execution. In particular, we rely on precision, re-
call, F-score w.r.t. a sense-aware gold standard set
of hypernyms. For that, sense labels are removed
from the compared methods and then an is-a pair
(w,h) ∈ R is considered as predicted correctly if
and only if there is a path from some sense of w to
some sense of h in the gold standard dataset. Let
G = (VG,EG) be the gold standard taxonomy and
H = (V,E) be the taxonomy to evaluate against G.
Let u G→ v be the directed path from the node u to
the node v in G. Then, we define the numbers of

Table 2: Skip-gram-based word embeddings used
to construct synset embeddings.

Language Dataset Genre Dim. # tokens

English Google News news 300 100×109

Russian RDT books 500 13×109

positive and negative answers as follows:

TP = |(u,v) ∈ E : ∃u G→ v|, (11)

FP = |(u,v) ∈ E : �u G→ v|, (12)

FN = |(u,v) ∈ EG: �u H→ v|, (13)

where TP is the number of true positives, FP is the
number of false positives, and FN is the number of
false negatives. As the result, we use the standard
definitions of precision as Pr = TP

TP+FP , recall as
Re = TP

TP+FN , and F-score as F1 =
2·Pr·Re
Pr+Re .

Note that the presented approach could overesti-
mate the number of true positives when the nodes
are located far from each other in the gold standard.
Only the words appearing both in the gold standard
and in the comparable datasets are considered. The
remaining words are excluded from the evaluation.

4.2 Datasets

The hypernymy datasets for both languages have
been extracted from Wiktionary using the JWKTL
tool by Zesch et al. (2008); the Wiktionary dump
was obtained on June 1, 2018. As the non-gold
datasets of synsets, we use the automatically dis-
covered synsets published by Ustalov et al. (2017b)
for both English and Russian.2

For English, we combine two data sources: Wik-
tionary and a hypernymy pair dataset obtained

2https://github.com/dustalov/watset/
releases/tag/v1.0
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using Hearst Patterns from a large text corpus.
The corpus has 9 billion tokens compiled from the
Wikipedia3, Gigaword (Graff and Cieri, 2003), and
ukWaC (Ferraresi et al., 2008) corpora. The union
of hypernyms from Wiktionary and Hearst patterns
is denoted as ALL. As word embeddings for En-
glish, we use the Google News vectors.4 Finally,
WordNet (Fellbaum, 1998) was used as the gold
standard dataset in our experiments as a commonly
used source of ground truth hypernyms.

For Russian, we use a composition of three dif-
ferent hypernymy pair datasets summarized in Ta-
ble 1: a dataset extracted from the lib.rus.ec
electronic library using the Hearst (1992) pat-
terns implemented for the Russian language in
the PatternSim5 toolkit (Panchenko et al., 2012),
a dataset extracted from the Russian Wiktionary,
and a dataset extracted from the sense definitions
in the Small Academic Dictionary (SAD) of the
Russian language (Kiselev et al., 2015). We also
consider the ALL dataset uniting Patterns, Wik-
tionary and Small Academic Dictionary. As word
embeddings, we use the Russian Distributional The-
saurus (RDT) vectors.6 Finally, as the gold stan-
dard, we use the RuWordNet7 lexical database for
Russian (Loukachevitch et al., 2016).

4.3 Meta-Parameters of the Methods

Parameter tuning during prototyping showed that
the optimal parameters for English were n = 3,
k = 1 and m = 15 for WordNet, and n = 3, k = 1
and m = 20 for WATSET; for Russian the optimal
values were n = 3, k = 1 and m = 20 for all the
cases. Table 2 briefly describes the word embed-
ding datasets.

5 Results and Discussion

Tables 3 and 4 show the results for the first ex-
periment on hypernymy extraction using for both
languages. According to the experimental results
for both languages on the gold standard synsets, the
Full model outperforms the others in terms of recall
and F-score. The improvements are due to gains
in recall with respect to the input hypernyms (No
Synsets). This confirms that the proposed approach

3http://panchenko.me/data/joint/
corpora/en59g/wikipedia.txt.gz

4https://code.google.com/archive/p/
word2vec/

5https://github.com/cental/patternsim
6https://russe.nlpub.org/downloads/
7http://ruwordnet.ru/en/

Table 3: Performance of our methods on the Word-
Net gold standard using the synsets from Word-
Net (PWN) and automatically induced synsets
(WATSET) for English; the best overall results are
boldfaced.

Method # pairs Pr Re F1

PW
N Full(ALL) 75894 53.23 39.95 45.27

Sparse(ALL) 61056 56.78 36.72 44.60

W
A

T
S

E
T Full(ALL) 72686 57.60 18.93 28.49

Sparse(ALL) 40303 62.42 16.85 26.53

N
o

Sy
ns

et
s ALL 98096 64.84 18.72 29.05

Hearst Patterns 38530 67.09 16.57 26.58
Wiktionary 59674 46.78 1.36 2.64

improves the quality of the input hypernymy pairs
by correctly propagating the hypernymy relation-
ships to previously non-covered words with the
same meaning.

According to the experiments on the automati-
cally induced synsets by the WATSET method from
Ustalov et al. (2017b), the Full model also yields
the best results, the quality of the synset embed-
dings greatly depends on the quality of the cor-
responding synsets. While these synsets did not
improve the quality of the hypernymy extraction
for English, they show large gains for Russian.

Error analysis shows the improvements for Rus-
sian can be explained by higher quality input
synsets for this language: some English synsets
are implausible according to our human judgment.
For both languages, our method improves both pre-
cision and recall compared to the union of the input
hypernyms, ALL. Finally note that while the abso-
lute numbers of precision and recall are somewhat
low, especially for the Russian language, these per-
formance scores are low even for resources con-
structed completely manually, e.g., Wiktionary and
the Small Academic Dictionary in Table 4. This is
the result of a vocabulary mismatch between the
gold standards and the input hypernymy datasets.
Note that the numbers of pairs reported in Tables 3
and 4 differ from the numbers presented in Table 1
also due to a vocabulary mismatch.

6 Conclusion

In this study, we presented an unsupervised method
for disambiguation and denoising of an input
database of noisy ambiguous hypernyms using au-
tomatically induced synsets. Our experiments show
a substantial performance boost on both gold stan-
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Table 4: Performance of our methods on the Ru-
WordNet gold standard using the synsets from
RuWordNet (RWN) and automatically induced
synsets (WATSET) for Russian; the best overall
results are boldfaced.

Method # pairs Pr Re F1

R
W

N Full(ALL) 297387 37.65 41.88 39.65
Sparse(ALL) 145114 31.53 22.02 25.93

W
A

T
S

E
T Full(ALL) 281006 25.75 17.27 20.67

Sparse(ALL) 166937 25.58 13.83 17.95

N
o

Sy
ns

et
s ALL 212766 23.48 9.81 13.84

SAD 36800 24.41 5.44 8.90
Wiktionary 172999 42.04 3.78 6.94
Hearst Patterns 10458 39.49 0.62 1.22

dard datasets for English and Russian on a hyper-
nymy extraction task. Especially supported by our
results on Russian, we conclude that our approach,
provided even with a set of automatically induced
synsets, improves hypernymy extraction without
explicit human input. The implementation8 of the
proposed approach and the induced resources9 are
available online. Possible directions for future stud-
ies include using a different approach for synset
embeddings (Rothe and Schütze, 2015) and hyper-
nym embeddings (Nickel and Kiela, 2017).
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