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Abstract

While automatic speech recognition is an
important task, freely available models are
rare, especially for languages other than
English. In this paper, we describe the pro-
cess of training German models based on
the Mozilla DeepSpeech architecture using
publicly available data. We compare the re-
sulting models with other available speech
recognition services for German and find
that we obtain comparable results. Accept-
able performance under noisy conditions
would, however, still require much more
training data. We release our trained Ger-
man models and also the training configu-
rations.

1 Introduction

Automatic speech recognition (ASR) is the task of
translating a spoken utterance into a textual tran-
script. It is a key component of voice assistants like
Google Home (Li et al., 2017), in spoken language
translation devices (Krstovski et al., 2008), or for
automatic transcription of audio and video files
(Liao et al., 2013). For any language beyond En-
glish, readily available pre-trained models are still
rare. For German, we are only aware of the model
by Milde and Köhn (2018) for the Kaldi framework
(Povey et al., 2011). For the recently introduced
Mozilla DeepSpeech framework, a German model
is still missing. This is a serious obstacle to ap-
plied research on German speech data, as available
web-services by Google, Amazon, or Microsoft are
problematic due to data privacy reasons. We thus
use publicly available speech data to train a Ger-
man DeepSpeech model. We release our trained
German model and also publish the code and con-
figurations enabling researchers to (i) directly use
the model in applications, (ii) reproduce state-of-
the-art results, and (iii) train new models based on
other source corpora.

2 Speech Recognition Systems

Due to the underlying complexity of recogniz-
ing spoken language and the wish of the service
provider to keep the model private, many systems
are offered as web services. This includes com-
mercial services like Google Cloud Speech-to-Text
(He et al., 2018), Amazon Alexa Voice Services1,
IBM Watson Speech to Text (Saon et al., 2017) or
Speechmatics2 as well as academic services like
BAS.3 While web services are convenient, there
are many situations where they cannot be used:

• sending data to a web service might violate
data privacy protection laws

• as the data throughput of a web service is
limited; it might rule out batch processing of
large amounts of speech data

• the user cannot control (or change) the func-
tionality of a remotely deployed web service

• research results based on web service calls
are not easily replicable, as services might
change without notice or become unavailable
altogether.

For this work, we therefore consider only frame-
works that can be used locally and without restric-
tions. One such framework is Kaldi (Povey et al.,
2011) which was found to be the best perform-
ing open-source ASR system in a previous study
(Gaida et al., 2014). It is open-source toolkit writ-
ten in C++ that supports conventional models (e.g.
Gaussian Mixture Models) as well as deep neu-
ral networks. Recently, end-to-end neural systems
like wav2letter++ (Pratap et al., 2018) provided by
Facebook, or DeepSpeech4 provided by Mozilla
have been introduced. To our knowledge, there is

1https://developer.amazon.com/alexa/science
2https://www.speechmatics.com
3https://clarin.phonetik.uni-muenchen.de/BASWebServices/interface/ASR
4https://github.com/mozilla/DeepSpeech
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Figure 1: DeepSpeech architecture (adapted from
Mozilla Blog5)

only one German model for any of these frame-
works that is publicly available, which is the one
by Milde and Köhn (2018) for Kaldi. Other Ger-
man models, e.g. a Kaldi model from Fraunhofer
IAIS (Stadtschnitzer et al., 2014), rely on in-house
datasets and are not publicly available.

In this work, we focus on Mozilla’s DeepSpeech
framework, as it is an end-to-end neural system
that can be quite easily trained, unlike Kaldi, which
requires more domain knowledge or wav2letter++,
which is not yet widely tested by the community.

Mozilla DeepSpeech DeepSpeech (v0.1.0) was
based on a TensorFlow (Abadi et al., 2016) imple-
mentation of Baidu’s end-to-end ASR architecture
(Hannun et al., 2014). As it is under active devel-
opment, the current architecture deviates from the
original version quite a bit. In Figure 1, we give
an overview of the architecture of version v0.5.0,
which we also used for our experiments in this
paper.6

DeepSpeech is a character-level, deep recurrent

5https://hacks.mozilla.org/2018/09/speech-recognition-deepspeech
6https://github.com/mozilla/DeepSpeech/releases/tag/v0.5.0

neural network (RNN), which can be trained end-
to-end using supervised learning.7 It extracts Mel-
Frequency Cepstral Coefficients (Imai, 1983) as
features and directly outputs the transcription, with-
out the need for forced alignment on the input or
any external source of knowledge like a Grapheme
to Phoneme (G2P) converter. Overall, the network
has six layers: the speech features are fed into three
fully connected layers (dense), followed by a uni-
directional RNN layer, then a fully connected layer
(dense) and finally an output layer as shown in Fig-
ure 1. The RNN layer uses LSTM cells, and the
hidden fully connected layers use a ReLU activa-
tion function. The network outputs a matrix of
character probabilities, i.e. for each time step the
system gives a probability for each character in the
alphabet, which represents the likelihood of that
character corresponding to the audio. Further, the
Connectionist Temporal Classification (CTC) loss
function (Graves et al., 2006) is used to maximize
the probability of the correct transcription.

DeepSpeech comes with a pre-trained English
model, but while Mozilla is collecting speech sam-
ples8 and is releasing training datasets in several
languages (see paragraph on Mozilla Common
Voice in Section 3), no official models other than
English are provided. Users have reported on train-
ing models for French9 and Russian (Iakushkin et
al., 2018), but the resulting models do not seem to
be available.

3 Model Training

In this section, we describe in detail our setup for
training the German model in order to ease subse-
quent attempts to train DeepSpeech models.

3.1 Datasets
To train the German Deep Speech model, we utilize
the following publicly available datasets:

The Voxforge10 corpus, which is about 35 hours
of German speech clips. Nearly 180 speakers have
read aloud sentences from German Wikipedia, pro-
tocols from the European Parliament, and some
individual commands. The clips vary in length,
ranging from 5 to 7 seconds.

The Tuda-De (Milde and Köhn, 2018) corpus,
is similar to Voxforge. It uses the same sources

7https://hacks.mozilla.org/2017/11/a-journey-to-10-word-error-rate/
8https://voice.mozilla.org/
9http://bit.ly/discourse-mozilla-org

10http://www.voxforge.org/home/forums/other-languages/german/

open-speech-data-corpus-for-german
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Dataset Size Median Length # Speakers Condition Type

Voxforge 35h 4.5s 180 noisy read
Tuda-De 127h 7.4s 147 clean read
Mozilla Common Voice 140h 3.7s >1,000 noisy read

Table 1: Overview of German datasets

(Wikipedia, parliament speeches, commands), but
the recordings are under more controlled condi-
tions. The final data was also curated “to reduce
speaking errors and artefacts”. Each recording was
made with 4 different microphones at the same
time. This means that while the overall size of
the dataset is larger than Voxforge and a model
based on this dataset is supposed to be more robust,
the actual amount of unique speech hours in both
datasets are about the same.

The Mozilla Common Voice project11 aims to
make speech recognition open to everyone. The
multilingual dataset currently covers 18 languages -
including English, French, German, and Mandarin.
The German corpus contains clips with lengths
varying from 3 to 5 seconds. However, the corpus
is recorded outside controlled conditions as per the
comfort of the speaker. The utterances have back-
ground noise, and users have varied accents. There-
fore we expect this dataset to be relatively challeng-
ing. Speakers in this dataset are relatively young,
and the male/female ratio is about 5:1, which might
result in a severe bias when trying to transfer the
model.12 The version used in our experiments has
140 hours of recordings, but as Mozilla aims at
adding more recordings, there might already be a
larger dataset available.

3.2 Preprocessing

DeepSpeech expects audio and transcription data
to be prepared in a specific format so that they can
be read directly by the input pipeline (see Figure 2
for an example). We cleaned the transcriptions
by removing commas as well as punctuation and
converting all transcriptions to lower case. We
further ensured all audio clips are in .wav format.
The pruned results were split into training (70%),
validation (15%), and test data (15%).

For more details on data preprocessing parame-
ters, we refer the reader to the code release.13

11https://voice.mozilla.org/de/datasets
12Speaker Information is based on the self-reported statis-

tics provided on the project homepage for each dataset.
13https://github.com/AASHISHAG/deepspeech-german

Hyperparameter Value

Batch Size 24
Dropout 0.25
Learning Rate 0.0001

Table 2: Hyperparameters used in the experiments

3.3 Hyperparameter Setup

We searched for a good set of hyperparameters
as shown in Figure 3. In the first iteration, we
select learning rate and train batch-size and plot
the graph showing the relationship of dropout and
word-error rate, to determine the dropout with the
lowest WER. We then used the best dropout (0.25)
from the above iteration and kept the train batch
size, to identify the best learning rate. Finally,
we took the best dropout (0.25) and learning rate
(0.0001) to determine the effect on batch size which
shows that our initial choice of 24 was reasonable,
even if somewhat better results seem possible using
smaller batches.

Since Deep Speech employs early stopping,
which stops the training of a neural network early
before it overfits the training data, we did not ex-
periment much with the number of epochs. The re-
maining hyperparameters were set to be the same as
those pre-configured in Mozilla Deepspeech. The
best results are obtained with the hyper-parameters
mentioned in Table 2. We train the network using
the Adam optimizer (Kingma and Ba, 2014).

Language Model We apply a probabilistic lan-
guage model using KenLM toolkit (Heafield, 2011)
to train a 3-gram model on the pre-processed cor-
pus provided by Radeck-Arneth et al. (2015). It
consists of eight million filtered sentences compris-
ing 63.0% Wikipedia, 22.0% Europarl, and 14.6%
crawled sentences. MaryTTS14 has been used to
canonicalize the corpus, i.e. normalized to a form
that is close to how a reader would speak the sen-
tence, especially changing numbers, abbreviations,
and dates. Additionally, punctuations were dis-
carded, as it is usually also not pronounced. We

14http://mary.dfki.de/
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Figure 2: Screenshot of the input file format

0 0.2 0.4 0.6 0.8

20

40

60

80

100

Dropout

W
E

R

0 0.2 0.4 0.6 0.8 1

·10−3

20

40

60

80

100

Learning Rate
0 10 20 30

10

20

30

40

Batch Size

Figure 3: Hyperparameter search space

Dataset WER

Mozilla 79.7
Voxforge 72.1
Tuda-De 26.8
Tuda-De + Mozilla 57.3
Tuda-De + Voxforge 15.1
Tuda-De + Voxforge + Mozilla 21.5

Table 3: German DeepSpeech results

used the unpruned Language Model that has a
rather large vocabulary size of over 2 million types,
but we expect pruning would only affect runtime,
not recognition quality.

3.4 Server & Runtime

We trained and tested our models on a compute
server having 56 Intel(R) Xeon(R) Gold 5120
CPUs @ 2.20GHz, 3 Nvidia Quadro RTX 6000
with 24GB of RAM each. Typical training time on
a single dataset under this setup was in the range
of 1 hour.

4 Results & Discussion

Table 3 shows the word error rates (WER) obtained
when training and testing DeepSpeech on the avail-
able German datasets and their combinations. The
best configuration in Milde and Köhn (2018) using
only the Tuda-De corpus yields a WER of 28.96%.

Our model only trained on Tuda-De yields a com-
parable WER of 26.8%.

Results for the other datasets are much lower, but
apparently combining several datasets improves the
results. While the combination of Tuda and Mozilla
yields a WER of 57.3%, the combination of Tuda,
Voxforge, and Mozilla gives a WER of 21.5%.
Combining the very similar Tuda-De and Voxforge
yields a WER of 15.1%, which is a remarkable im-
provement over using only a single dataset. Note
that this is the black-box performance, as we used
DeepSpeech as is and only slightly tuned hyper-
parameters. See Section 6 for ideas on how to
improve over these results.

To put our results into perspective, in Table 4,
we present results in other languages for training
different versions of the DeepSpeech architecture.
Our best results are in the same range as for the
other languages, but cross-dataset comparisons are
hard to interpret. However, it is safe to say that
training a DeepSpeech model can result in accept-
able in-domain word error rates with considerably
less training data than previously considered.

4.1 Influence of Training Size
Figure 4 depicts the relation between the amount of
training data and its impact on the word-error-rate.
To plot the learning curve, we split the training
data into 10 subsets containing each 10% of the
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Figure 4: Learning curves for single datasets
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Figure 5: Learning curves when combining datasets
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Language DeepSpeech version Training Set Size Test Set WER

English Baidu
(Hannun et al., 2014)

Switchboard
Fisher
WSJ
Baidu

7,380h Hub5 (LDC2002S23) 16.0

English Mozilla v0.3.0
Switchboard
Fisher
LibriSpeech

3,260h LibriSpeech (clean test) 11.0

English Mozilla v0.5.0
Switchboard
Fisher
LibriSpeech

3,260h LibriSpeech (clean test) 8.2

Russian Mozilla v?
(Iakushkin et al., 2018)

Yt-vad-1k
Yt-vad-650-clean 1,650h Voxforge (Russian) 18.0

German Mozilla v0.5.0
(our) Tuda-De + Voxforge 162h Tuda-De + Voxforge (test) 15.1

Table 4: Comparison with previous results in other languages

training data. Then the model is trained on one
subset and WER is calculated on a separate test
dataset. Next, we introduce the new subset with
more data, re-train the model, and compute its ef-
fect on the error rate. The model is trained on each
subset for a maximum of 10 epochs and sometimes
less when the model starts to overfit the training
data, and early stopping is triggered. We observe
that the rather noisy datasets Voxforge and Mozilla
converge rather slowly, while the clean Tuda-De
reaches much better results. This might also be
a result of the different microphones that add in-
creased robustness (not unlike other data augmen-
tation strategies).

Figure 5 present the same learning curves when
combining datasets showing that we can reach even
better WER in this setting. Mixing the datasets
seems to force the model to converge more quickly.
However, combining the similar dataset Tuda-De
and Voxforge yields a bit better performance than
combining all three datasets.

We also tested against a mix of all datasets in
combination, but add training data one dataset at
a time. Thus, the order in which datasets are in-
troduced into the training process might influence
performance. Figure 6 shows the results for dif-
ferent order in which the datasets are introduced
into the training process. Adding the noisy Mozilla
dataset too early in the process seems to slow down
convergence, while it adds a little bit of improved
performance when added in the end.

4.2 Cross-dataset Performance

So far, we used training and testing data either from
the same dataset or a mix of the available datasets,

Train Test WER

Voxforge

Voxforge

72.1
Tuda-De 96.8
Mozilla 73.1
Tuda-De, Mozilla 66.2

Tuda-De

Tuda-De

26.8
Voxforge 98.5
Mozilla 84.9
Voxforge, Mozilla 83.8

Mozilla

Mozilla

79.7
Tuda-De 94.8
Voxforge 87.1
Tuda-De, Voxforge 80.5

Table 5: Results across datasets

while of course keeping train and test data separate.
To get a more realistic estimate of performance
when used in a general setting, we assess cross-
dataset performance, i.e. we train and develop on
one or two datasets and test on a third one.

Table 5 shows the resulting word error rates. Ap-
parently, the cross-domain results are much worse
than in the in-domain setting in Table 3. For exam-
ple, training on Mozilla or Voxforge and Mozilla
and testing on Tuda-De yield unacceptable word
error rates of 84.9 and 83.8 compared to 26.8 when
training on Tuda-De. Interestingly, in this case, as
we have seen already above, adding Voxforge in
the mix does not help much, even if it is similar to
Tuda-De. We see a similar picture for the other test
datasets, transferring from a single dataset does not
work at all, as in the training process the model is
never forced to generalize beyond its properties.

However, training on the Tuda-De and Mozilla
combination yields WER of 66.2 on Voxforge,
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Model WER Example

original - der bandbreitenverbrauch wird erheblich verringert
Tuda-De 60 diese zeiten tonwoche erheblich verringert
Voxforge 80 zeiten epoche erheblich in
Tuda-De + Mozilla 160 es sind endete suche den ist es in
Tuda-De + Voxforge 60 der pen zeiten verprach wird erheblich verringert
Tuda-De + Voxforge + Mozilla 40 der bandbreiten verbrauch wird erheblich verringert

original - ferner gibt es möglicherweise eine gewisse anonymität und sicherheit
Tuda-De 78 weites mögliche welche in glichen unität und sicherheit
Voxforge 100 zitierweise sich entsichert
Tuda-De + Mozilla 100 hunde titisee gelten die die mitte zum
Tuda-De + Voxforge 44 den gibt es möglicherweise eine gewisse mietsicherheit
Tuda-De + Voxforge + Mozilla 11 er gibt es möglicherweise eine gewisse anonymität und sicherheit

original - die einwilligung des schuldners war nicht erforderlich
Tuda-De 100 ideen
Voxforge 86 die angebliche natacha vollich
Tuda-De + Mozilla 57 die einwilligung des schutzmacht erfordern
Tuda-De + Voxforge 86 die ein eigenes schuldnersicht erfordern
Tuda-De + Voxforge + Mozilla 43 die einigung des schuldner zwar nicht erforderlich

original - die geschwindigkeit für die kunden kann erhöht werden
Tuda-De 75 die geschwindigkeit und unterteilten
Voxforge 100 schinkelpreise
Tuda-De + Mozilla 88 wie die schmiede den trennendes
Tuda-De + Voxforge 38 die geschwindigkeit für die kunden kenterte
Tuda-De + Voxforge + Mozilla 0 die geschwindigkeit für die kunden kann erhöht werden

original - mehrere arbeitgeberverbände sind zu einem dachverband zusammengeschlossen
Tuda-De 114 der see aufweitungen des in einem tatorten samen erschossen
Voxforge 100 es recognitionszeichen
Tuda-De + Mozilla 100 in den sitzungen des entstandenen schaden
Tuda-De + Voxforge 29 mehrere arbeitgeberverbände sind zu einem tachodaten geschlossen
Tuda-De + Voxforge + Mozilla 14 der arbeitgeberverbände sind zu einem dachverband zusammengeschlossen

Table 6: Recognition results on random Voxforge test instances

which is even lower than using the training por-
tion of Voxforge (which yields 72.1). Thus forcing
the model to generalize over topics, recording con-
ditions, speakers, etc. seem to be a crucial point.

5 Error Analysis

Table 6 shows the recognition results on randomly
selected test instances from the Voxforge dataset.
The models trained on only one dataset are surpris-
ingly bad, resulting in rather poetic utterances that
sometimes are quite far from the expected source.
An example is the Tuda-De model recognizing
tatorten samen erschossen instead of dachverband
zusammengeschlossen.

As is to be expected for German, compounds
are especially challenging as exemplified by band-
breitenverbrauch that is recognized as bandbreiten
verbrauch or even pen zeiten verprach, where ver-
prach is probably only in the language model as a
common misspelling of versprach.

The models often fail in interesting ways, e.g.
all models sometimes return very short results like
schinkelpreise that should actually have low prob-

ability. We currently have no explanation for this
behaviour and need to explore the issue further.

In cases like des schuldners war being recog-
nized as des schuldner zwar, the phonetic ambigu-
ity should have been resolved by a better language
model.

6 Summary

In this paper, we presented the first results on
building a German speech recognition model using
Mozilla Deep Speech. Our best performing model
reaches an in-domain WER of 15.1%, which is in
line with the performance for other languages us-
ing the DeepSpeech framework. Our results thus
support the idea that Mozilla Deep Speech can
be easily transferred to new languages. Learning
curve experiments highlight the importance of the
amount of training data, but also quite strong order
effects when mixing the datasets.

We publish our trained model along with con-
figuration data for all our experiments in order to
enable replicating all results. The model can eas-
ily be re-trained and optimised on new datasets by
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referring the code-release.15 No specific hardware
is required to run the trained model, and it works
even on a normal desktop computer or laptop.

Future Work Our experiments only scratch the
surface of possible approaches, and our analysis
recommends several avenues for further explo-
ration.

We mainly treated DeepSpeech as a black-box
and only performed a light hyper-parameter search.
The model can probably still be fine-tuned by ex-
ploring other hyper-parameters. We also did not
experiment much with the language model, but
used a simple 3-gram model.

Since the amount of publicly available training
data is limited, it could be interesting to consider
data augmentation strategies.16 Another approach
to improve recognition quality could be to use
transfer learning by taking an English model (pre-
trained with the larger English datasets) and re-
training with the German data (Kunze et al., 2017;
Bansal et al., 2018). In the light of recent discus-
sions on the CO2 footprint of training deep learning
models (Strubell et al., 2019), using re-training and
providing trained models is desirable. Additionally,
more research is needed to find neural architectures
that perform equally well, but require less compute.

Finally, the training process described here could
be easily used to train speech recognition models
for other languages, where currently no pre-trained
models are available.
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Biemann. 2015. Open source german distant
speech recognition: Corpus and acoustic model. In
Text, Speech, and Dialogue, pages 480–488, Cham.

[Saon et al.2017] George Saon, Gakuto Kurata, Tom
Sercu, Kartik Audhkhasi, Samuel Thomas, Dim-
itrios Dimitriadis, Xiaodong Cui, Bhuvana Ram-
abhadran, Michael Picheny, Lynn-Li Lim, Bergul
Roomi, and Phil Hall. 2017. English conversa-
tional telephone speech recognition by humans and
machines. CoRR, abs/1703.02136.

[Stadtschnitzer et al.2014] Michael Stadtschnitzer,
Jochen Schwenninger, Daniel Stein, and Joachim
Koehler. 2014. Exploiting the large-scale German
Broadcast Corpus to boost the Fraunhofer IAIS
Speech Recognition System. In Proceedings of
LREC 2014, pages 3887–3890, Reykjavik, Iceland.

[Strubell et al.2019] Emma Strubell, Ananya Ganesh,
and Andrew McCallum. 2019. Energy and policy
considerations for deep learning in nlp. In Proceed-
ings of ACL.

119


