
TUWienKBS19 at GermEval Task 2, 2019:
Ensemble Learning for German Offensive Language Detection

Joaquı́n Padilla Montani
TU Wien

Institut für Logic and Computation
Favoritenstraße 9-11, 1040 Austria
jpadillamontani@gmail.com

Peter Schüller
TU Wien

Institut für Logic and Computation
Favoritenstraße 9-11, 1040 Austria

ps@kr.tuwien.ac.at

Abstract

The TUWienKBS19 system for German of-
fensive language detection in the GermEval
2019 shared task is a stacking ensemble
system. Five disjoint sets of features are
used: token and character n-grams, relat-
edness to the, according to tf-idf, most
important tokens and character n-grams
within each class, and the average of the
embedding vectors of all tokens in a tweet.
Several base classifiers are trained inde-
pendently on each of these features, yield-
ing meta-level features which one maxi-
mum entropy model uses to perform the
final classification. Our system achieved
a macro-averaged F1-score of 76,80% on
subtask I, and 51,86% on subtask II.

1 Introduction

We describe the TUWienKBS19 system that partic-
ipated in the GermEval Task 2, 2019, Shared Task
on the Identification of Offensive Language.

This task is relevant for supporting humans
when they moderate online content. In the pseudo-
anonymous environment of microposts, abusive
language is easily produced by users and it is an
important objective to prevent that such content is
broadcast to a large number of readers.

Our system is based on a stacked architecture
where a set of base level classifiers is trained on a
set of five feature groups, and the resulting trained
models are forwarded to a meta-level classifier
that determines the final outcome of the prediction.
This architecture and its training method builds
upon the system (Padilla Montani and Schüller,
2018) we submitted to GermEval 2018. This 2018
system was in turn inspired by the EELECTION
system (Eger et al., 2017).

This year’s system compares to its predecessor
(Padilla Montani and Schüller, 2018) as follows:

• Feature extraction was kept as before, al-
though several hyperparameters were read-
justed using this year’s training data.

• The set of base level classifiers used has been
broadened, while keeping training times low.

This paper is organized as outlined below. In
Section 2 we give details about the competition
subtasks and evaluation metrics. In Section 3 we de-
scribe tweet preprocessing and the features we used.
In Section 4 we describe the machine learning mod-
els we used and the stacked predictor model and
we describe how we trained this architecture. Sec-
tion 5 describes our submitted runs and provides
the official competition scores for each run and
subtask. We conclude the paper in Section 6.

The source code of our system, i.e., feature com-
putation, training, and classification, is available
online.1

2 Data and Subtasks

The GermEval Task 2, 2019, Shared Task on the
Identification of Offensive Language2 solicited the
submission of systems to automatically classify
German language microposts (in a Twitter dataset)
with respect to their offensiveness. Such predic-
tions are a valuable tool for assisting human moder-
ators with the job of reducing the amount of hurtful,
derogatory or obscene online content.

This year’s edition of the Shared Task consisted
of three subtasks:

• Subtask I: coarse-grained classification into
the two classes “OFFENSE” and “OTHER”
(where “OTHER” means non-offensive).

• Subtask II: fine-grained classification into
the four classes “PROFANITY”, “INSULT”,
“ABUSE”, and “OTHER”.

1https://github.com/jpadillamontani/
germeval2019

2https://projects.fzai.h-da.de/iggsa/

Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019)
Distributed under a CC BY-NC-SA 4.0 license.

418

https://creativecommons.org/licenses/by-nc-sa/4.0/


• Subtask III: offensive tweets are further clas-
sified into the two subcategories “EXPLICIT”
and “IMPLICIT”.

In each of the subtasks, the classes are mutually ex-
clusive. For example, in subtask II the “PROFAN-
ITY” class does not contain any insults, “ABUSE”
does not insult a single concrete person but a whole
group of people and is also abusive in a way that is
not simply “PROFANITY”. For further details see
also the annotation guidelines (Ruppenhofer et al.,
2018).

The submitted systems are evaluated according
to the macro-averaged F1-score of their predictions,
i.e. each class contributes equally to the final score,
independent from the number of samples in the
class.

Our team participated in subtasks I and II. For
these two subtasks, the training set contains 12536
tweets, where 8359 are marked as “OTHER” and
the remaining ones as “OFFENSE”. Of the offen-
sive tweets, 2305 are marked as “ABUSE”, 1601
as “INSULT”, and 271 as “PROFANITY”.

3 Features

We implemented feature extraction using the li-
braries scikit-learn (Pedregosa et al., 2011) for
tf–idf computations, NLTK (Bird et al., 2009) for
tokenization and stemming, and gensim (Řehůřek
and Sojka, 2010) for managing precomputed word
embeddings.

3.1 Preprocessing
Our preprocessing approach first removes all han-
dles (@username) and replaces the special charac-
ters “#- ,;:/+)<>&” and line break characters by
spaces. The substring “’s” (as in “geht’s”) is also
replaced by a space.

For tokenization we used NLTK’s
TweekTokenizer with reduceLen=True.
This parameter means that repetitions of the same
character are shortened to at most three letters
(e.g., “cooooool” is normalized to “coool”).

For features for which we applied stemming,
NLTK’s GermanStemmer was utilized.

Table 1 gives an overview of the groups of fea-
tures we used and the type of preprocessing used
in each case. We describe each feature group in the
following.

Special Preprocessing indicates which additional
preprocessing was done beyond handle removal,
special character replacement and tokenization. For

creating character-level features we concatenated
(Join in Table 1) the resulting tokens with spaces
into one string for extracting character-level n-
grams, i.e. we always used the tokenizer (even
for character-level features) to make use of its
reduceLen feature.

3.2 Character and Token N-Gram Features

The feature groups CNGR and TNGR are simi-
lar, so we describe them together. Both operate
on a lowercased version of the input, and TNGR
additionally performs stemming on each token.

CNGR extracts all character-level n-grams of
length 3 to 7, while TNGR extracts all stemmed
token-level n-grams of length 1 to 3.

In both cases, we performed tf-idf over all ex-
tracted n-grams. Only n-grams with a document
frequency between 0.01 and 0.0002 at the token
level, and only those with a document frequency
between 0.02 and 0.0001 at the character level were
kept (i.e., those that are rare enough to carry some
signal, but frequent enough to have a potential to
generalize over unseen data). The described doc-
ument frequency thresholds were tuned by means
of a grid search on a 90%/10% split of the training
data, with the aim to maximize prediction scores
of the base classifiers (see Section 4).

We used the tf-idf score of the relevant n-
grams as input features (realized with scikit-learn’s
TfidfVectorizer).

3.3 Word Embedding Features

We used a pretrained word2vec-style skip gram
word embedding with 100 dimensions and window
size 5, created from a large collection of German
language tweets from the years 2013 to 2017 by
Heidelberg University.3

For each tweet, we created 100 real-valued fea-
tures by taking the average embedding of all tokens
in the tweet, normalized to unit length with the
`2-norm.

Whenever a word embedding is required, i.e.,
for feature groups TIMP and EMB, and whenever
the token is not in the vocabulary of the pretrained
list of word embeddings, we performed a fallback
operation. We searched for the largest prefix and
the largest suffix of the token of length 3 or greater
where we know a word embedding. If we find such

3http://www.cl.uni-heidelberg.de/
english/research/downloads/resource_
pages/GermanTwitterEmbeddings/
GermanTwitterEmbeddings_data.shtml

419



Symbol Name Level Special Preprocessing Word Embeddings

CNGR Character N-Grams C Lowercase + Join -
CIMP Important N-Grams C Join -
TNGR Token N-Grams T Lowercase + Stemming -
TIMP Important Tokens T - min/max cos distance
EMB Word Embeddings T - average

Table 1: Groups of features used for classification. Handle removal, special character replacement and
tokenization is used for all features. C and T stand for character and token level, respectively.

Subtask m Feature k

I 2 CIMP 2000
I 2 TIMP 2500

II 4 CIMP 500
II 4 TIMP 1000

Table 2: Number of important types selected for
each subtask and feature group.

affixes with embeddings, we use the embeddings
of these affixes as if they were separate tokens in
the tweet.

As an example, the word “Nichtdeutsche” (non-
Germans) in the dataset does not exist in some
pretrained word embedding models, so we en-
counter an OOV (out-of-vocabulary) exception.
Our method would use as a fallback two word em-
beddings for affixes “Nicht” (not) and “deutsche”
(German+Adj) because both affixes are present in
the word embedding model. This fallback signif-
icantly reduced the number of OOV exceptions
when extracting these features.

3.4 Important N-Gram and Token Features
These two groups of features are based on the same
idea: to perform tf-idf over the whole dataset, select
the k most important types relative to each of the m
classes (m= 2 in subtask I, m= 4 in subtask II). We
determine importance by ranking features accord-
ing to their average tf-idf value in all documents
in the respective class. Based on the resulting list
of k ·m most important type/class combinations we
create a feature for each k ·m combination. For
CIMP each type is a character n-gram, while for
TIMP each type is a token. Intuitively this selects
the most distinguishing types per category.

Table 2 shows the number of important types
selected for each subtask and each feature group.
These values were adjusted with a grid search on

a 90%/10% split of the training data in order to
maximize prediction scores of the base classifiers
(see Section 4).

So far we have only discussed how important
types are selected. We next describe which features
are generated from these important types.

For TIMP, for each important type t in a tweet
we obtain its word embedding~t and compute the
maximum and the minimum cosine distance from~t
to all other embeddings of other types in the same
tweet. We use the same OOV-fallback described
in Section 3.3. This yields a minimum and a maxi-
mum feature for each important type and each class:
2 · k ·m real features for each tweet.

For CIMP we have no embedding information,
therefore we create for each important type t a
Boolean feature that indicates whether t is con-
tained in the tweet or not. This yields a feature for
each important type and each class: k ·m Boolean
features for each tweet.

By creating a set of features for each class, we
increase the signal that can be learned for the “PRO-
FANITY” class in subtask II, since this class con-
tains a very small set of samples.

4 Classification

Our system is a stacking ensemble which builds
upon the system (Padilla Montani and Schüller,
2018) we submitted to GermEval 2018. That sys-
tem in turn was inspired by the EELECTION sys-
tem of Eger et al. (2017).

We implemented most of the classification using
the library scikit-learn (Pedregosa et al., 2011) and
refer to class and function names of scikit-learn in
the following (unless explicitly stated otherwise).

4.1 Base Classifiers

For each subtask and each of the 5 feature groups
discussed in Section 3, we independently trained a
varying number of base classifiers, selected out of:

420



Subtask Feature Base Classifiers

I CNGR ete, etg, lre, mnb, gbm
I TNGR ete, etg, lre, mnb
I CIMP lre, mnb, gbm
I TIMP ete, etg
I EMB ete, etg, lre, gbm

II CNGR ete, etg, lre, mnb
II TNGR ete, etg, lre, mnb
II CIMP lre, mnb, gbm
II TIMP ete, etg
II EMB ete, etg, lre, gbm

Table 3: Base classifiers used for each subtask and
each feature group.

(ete) an ensemble of random forests trained
on samples of the training set (Geurts
et al., 2006) using information gain as
criterion for scoring the sample splits
(class ExtraTreesClassifier with
criterion=entropy),

(etg) another ensemble of random forests trained
using Gini impurity for scoring sample
splits (class ExtraTreesClassifier
with criterion=gini),

(lre) a MaxEnt model with bal-
anced class weights (class
LogisticRegression),

(mnb) a multinomial naive Bayes classifier (class
MultinomialNB), and

(gbm) a gradient boosting model with deci-
sion trees as base learners from the li-
brary LightGBM (Ke et al., 2017) (class
LGBMClassifier).

We incorporated in the ensemble the base classi-
fiers from the above list which were able to achieve
good individual cross-validation performance after
fine tuning and were also relatively fast to train.
Table 3 details, for each subtask and feature group,
which of the base classifiers were used. We trained
a total of 18 base level classifiers in subtask I, and
17 in subtask II.

Each base classifier was trained on 90% of the
training data, and used to predict class probabilities
on the remaining 10%. We performed this process
10 times in a cross-validation manner to obtain

predictions for all tweets in the training data. Fur-
thermore, we then also trained each base classifier
on the whole training data, and used this models to
predict class probabilities for the test data. This pro-
cess generates the meta-level features that are used
by the meta classifier, as described in the following
section.

4.2 Meta Classifier

For subtask I we generated 36 meta-level features
per tweet, using the probabilistic class predictions
of 18 base classifiers (two classes). In subtask II we
have 68 meta-level features per tweet, according
to the probabilistic class predictions of 17 base
classifiers (four classes).

On these features and the known true classes of
the training tweets we trained a maximum entropy
model (class LogisticRegression). We used
balanced class weights and fine tuned the C parame-
ter for each subtask using stratified cross validation,
i.e. ensuring stable class ratios in each fold.

5 Submission

We submitted three runs for subtask I
and three runs for subtask II, named
TUWienKBS19 coarse #.txt and
TUWienKBS19 fine #.txt, respectively,
where # is the run number (1, 2 or 3).

Run 2 corresponds to the full ensemble system
as described in the previous sections. Run 1 dif-
fers from run 2 in that the CIMP features (and the
associated base classifiers) were disabled, since in
our pre-competition testing of the ensemble using
cross validation we obtained the best results when
not using these features. Training these ensemble
systems takes around 10 minutes for each subtask
and for each run, on a regular desktop computer.

Run 3 is a lightweight single model, namely a
MaxEnt model with balanced class weights (class
LogisticRegression) trained on our best
performing group of features: character level n-
grams (CNGR). This run only takes a few seconds
of training per subtask.

Table 4 shows the official macro-averaged F1-
score on the testing data for each of our submitted
runs.

6 Conclusion

We presented the TUWienKBS19 submission to the
GermEval Task 2, 2019, Shared Task on the Identi-
fication of Offensive Language. We submitted runs

421



Subtask Run F1-score

I 1 76,80
I 2 76,75
I 3 71,42

II 1 51,23
II 2 51,86
II 3 46,94

Table 4: Official results of our system runs.

for subtask I (binary classification) and subtask II
(fine-grained classification). Our approach used
a stacking ensemble system which was based on
our submission from last year’s shared task. We
utilized five groups of features, some operating
at the token level and some at the character level,
and we also made extensive use of pretrained word
embeddings.

Our system is built with a major challenge from
this competition in mind: the evaluation mode in
combination with the class imbalance in the train-
ing data. The competition evaluation uses macro-
averaging, i.e., each class counts the same. At the
same time, in subtask II, there is one class (“PRO-
FANITY”) with only 271 tweets as samples within
a training set which contains 12536 tweets. Our
tuning efforts were focused on managing this class
imbalance.

Acknowledgement

We thank the organizers of the competition. This
work has received financial support from the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme under grant agreement 825619
(AI4EU).

References
Steven Bird, Ewan Klein, and Edward Loper.

2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Steffen Eger, Erik-Lân Do Dinh, Ilia Kutsnezov, Ma-
soud Kiaeeha, and Iryna Gurevych. 2017. EELEC-
TION at SemEval-2017 Task 10: Ensemble of nEu-
ral Learners for kEyphrase ClassificaTION. In Pro-
ceedings of the 11th International Workshop on Se-
mantic Evaluation (SemEval 2017), pages 942–946.

Pierre Geurts, Damien Ernst, and Louis Wehenkel.
2006. Extremely randomized trees. Machine learn-
ing, 63(1):3–42.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang,
Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. 2017. LightGBM: A Highly Efficient Gradi-
ent Boosting Decision Tree. In Advances in Neu-
ral Information Processing Systems (NIPS 2017),
30:3146–3154.

Joaquı́n Padilla Montani and Peter Schüller. 2018.
TUWienKBS at GermEval 2018: German Abusive
Tweet Detection. In Proceedings of GermEval 2018,
14th Conference on Natural Language Processing
(KONVENS 2018), pages 45–50.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50.

Josef Ruppenhofer, Melanie Siegel, and Michael
Wiegand. 2018. Guidelines for IGGSA
Shared Task on the identification of of-
fensive language. http://www.coli.
uni-saarland.de/˜miwieg/Germeval/
guidelines-iggsa-shared.pdf.

422


